Applications of Mathematics, Vol. 68, No. 1, pp. 35-50, 2023


Global bifurcations in a dynamical model of recurrent neural networks

Anita Windisch, Péter L. Simon

Received July 31, 2021.   Published online November 18, 2022.   OPEN ACCESS

Abstract:  The dynamical behaviour of a continuous time recurrent neural network model with a special weight matrix is studied. The network contains several identical excitatory neurons and a single inhibitory one. This special construction enables us to reduce the dimension of the system and then fully characterize the local and global codimension-one bifurcations. It is shown that besides saddle-node and Andronov-Hopf bifurcations, homoclinic and cycle fold bifurcations may occur. These bifurcation curves divide the plane of weight parameters into nine domains. The phase portraits belonging to these domains are also characterized.
Keywords:  saddle-node; Hopf; homoclinic; cycle fold bifurcation; Hopfield model
Classification MSC:  34C23, 34C25, 34C37, 92B20


References:
[1] R. D. Beer: On the dynamics of small continuous-time recurrent neural networks. Adapt. Behav. 3 (1995), 469-509. DOI 10.1177/1059712395003004
[2] R. D. Beer: Parameter space structure of continuous-time recurrent neural networks. Neural Comput. 18 (2006), 3009-3051. DOI 10.1162/neco.2006.18.12.3009  | MR 2265210 | Zbl 1107.68075
[3] M. Breakspear: Dynamic models of large-scale brain activity. Nature Neurosci. 20 (2017), 340-352. DOI 10.1038/nn.4497
[4] N. Brunel: Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J. Comput. Neurosci. 8 (2000), 183-208. DOI 10.1023/A:1008925309027  | Zbl 1036.92008
[5] A. Ecker, B. Bagi, E. Vértes, O. Steinbach-Németh, M. R. Karlócai, O. I. Papp, I. Miklós, N. Hájos, T. F. Freund, A. I. Gulyás, S. Káli: Hippocampal sharp wave-ripples and the associated sequence replay emerge from structured synaptic interactions in a network model of area CA3. eLife 11 (2022), Article ID e71850, 29 pages. DOI 10.7554/eLife.71850
[6] B. Ermentrout: Neural networks as spatio-temporal pattern-forming systems. Rep. Progr. Phys. 61 (1998), Article ID 353, 78 pages. DOI 10.1088/0034-4885/61/4/002
[7] B. Ermentrout, D. H. Terman: Mathematical Foundations of Neuroscience. Interdisciplinary Applied Mathematics 35. Springer, New York (2010). DOI 10.1007/978-0-387-87708-2  | MR 2674516 | Zbl 1320.92002
[8] D. Fasoli, A. Cattani, S. Panzeri: The complexity of dynamics in small neural circuits. PLoS Comput. Biology 12 (2016), Article ID e1004992, 35 pages. DOI 10.1371/journal.pcbi.1004992
[9] D. Fasoli, A. Cattani, S. Panzeri: Bifurcation analysis of a sparse neural network with cubic topology. Mathematical and Theoretical Neuroscience. Springer INdAM Series 24. Springer, Cham (2017), 87-98. DOI 10.1007/978-3-319-68297-6_5  | MR 3793028 | Zbl 1401.92026
[10] W. Govaerts, Y. A. Kuznetsov, V. DeWitte, A. Dhooge, H. G. E. Meijer, W. Mestrom, A. M. Rietand, B. Sautois: MATCONT and CL_MATCONT: Continuation Toolboxes in Matlab. Gent University and Utrecht University, Gent and Utrecht (2011) .
[11] S. Grossberg: Nonlinear neural networks: Principles, mechanisms, and architectures. Neural Netw. 1 (1988), 17-61. DOI 10.1016/0893-6080(88)90021-4
[12] J. J. Hopfield: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA 79 (1982), 2554-2558. DOI 10.1073/pnas.79.8.255  | MR 0652033 | Zbl 1369.92007
[13] J. J. Hopfield: Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Natl. Acad. Sci. USA 81 (1984), 3088-3092. DOI 10.1073/pnas.81.10.3088  | Zbl 1371.92015
[14] Y. A. Kuznetsov: Elements of Applied Bifurcation Theory. Applied Mathematical Sciences 112. Springer, New York (2004). DOI 10.1007/978-1-4757-3978-7  | MR 2071006 | Zbl 1082.37002
[15] L. Perko: Differential Equations and Dynamical Systems. Texts in Applied Mathematics 7. Springer, New York (2001). DOI 10.1007/978-1-4613-0003-8  | MR 1801796 | Zbl 0973.34001
[16] T. Trappenberg: Fundamentals of Computational Neuroscience. Oxford University Press, Oxford (2010). MR 2583115  | Zbl 1179.92012
[17] A. Windisch, P. L. Simon: The dynamics of the Hopfield model for homogeneous weight matrix. Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Math. 64 (2021), 235-247. Zbl 07541738

Affiliations:   Anita Windisch, Department of Applied Analysis and Computational Mathematics, Institute of Mathematics, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary, e-mail: anita.windisch@ttk.elte.hu; Péter L. Simon (corresponding author), Department of Applied Analysis and Computational Mathematics, Institute of Mathematics, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary; Numerical Analysis and Large Networks Research Group, Hungarian Academy of Sciences, Széchenyi István sqr. 9, 1051 Budapest, Hungary, e-mail: peter.simon@ttk.elte.hu


 
PDF available at: