Applications of Mathematics, Vol. 67, No. 3, pp. 393-418, 2022


Global exponential stability of pseudo almost automorphic solutions for delayed Cohen-Grosberg neural networks with measure

Chaouki Aouiti, Hediene Jallouli, Mohsen Miraoui

Received July 11, 2020.   Published online January 25, 2022.

Abstract:  We investigate the Cohen-Grosberg differential equations with mixed delays and time-varying coefficient: Several useful results on the functional space of such functions like completeness and composition theorems are established. By using the fixed-point theorem and some properties of the doubly measure pseudo almost automorphic functions, a set of sufficient criteria are established to ensure the existence, uniqueness and global exponential stability of a $(\mu,\nu)$-pseudo almost automorphic solution. The theory of this work generalizes the classical results on weighted pseudo almost automorphic functions. Finally, a numerical example is provided to illustrate the validity of the proposed theoretical results.
Keywords:  pseudo almost automorphic solution; double measure; mixed delays
Classification MSC:  34C27, 34K14, 35B15, 37B25, 92C20


References:
[1] E. H. Ait Dads, K. Ezzinbi, M. Miraoui: $(\mu,\nu)$-pseudo almost automorphic solutions for some non-autonomous differential equations. Int. J. Math. 26 (2015), Article ID 1550090, 21 pages. DOI 10.1142/S0129167X15500901 | MR 3413985 | Zbl 1341.34049
[2] C. Aouiti, F. Dridi: New results on impulsive Cohen-Grossberg neural networks. Neural Process. Lett. 49 (2019), 1459-1483. DOI 10.1007/s11063-018-9880-y
[3] C. Aouiti, M. S. M'hamdi, A. Touati: Pseudo almost automorphic solutions of recurrent neural networks with time-varying coefficients and mixed delays. Neural Process. Lett. 45 (2017), 121-140. DOI 10.1007/s11063-016-9515-0
[4] J. Blot, G. M. Mophou, G. N'Guérékata, D. Pennequin: Weighted pseudo almost automorphic functions and applications to abstract differential equations. Nonlinear Anal., Theory Methods Appl., Ser. A 71 (2009), 903-909. DOI 10.1016/j.na.2008.10.113 | MR 2527511 | Zbl 1177.34077
[5] S. Bochner: Continuous mappings of almost automorphic and almost periodic functions. Proc. Natl. Acad. Sci. USA 52 (1964), 907-910. DOI 10.1073/pnas.52.4.907 | MR 0168997 | Zbl 0134.30102
[6] T. Diagana, K. Ezzinbi, M. Miraoui: Pseudo-almost periodic and pseudo-almost automorphic solutions to some evolution equations involving theoretical measure theory. Cubo 16 (2014), 1-32. DOI 10.4067/S0719-06462014000200001 | MR 3237503 | Zbl 1326.34075
[7] V. Kavitha, S. Abbas, R. Murugesu: $(\mu_1;\mu_2)$-pseudo almost automorphic solutions of fractional order neutral integro-differential equations. Nonlinear Stud. 24 (2017), 669-685. MR 3701881 | Zbl 1375.45011
[8] Y. Li, X. Meng, X. Zhang: Almost automorphic solutions for fuzzy Cohen-Grossberg neural networks with mixed time delays. Math. Probl. Eng. 2015 (2015), Article ID 812670, 14 pages. DOI 10.1155/2015/812670 | MR 3321681 | Zbl 1394.34145
[9] J. Liang, J. Zhang, T.-J. Xiao: Composition of pseudo almost automorphic and asymptotically almost automorphic functions. J. Math. Anal. Appl. 340 (2008), 1493-1499. DOI 10.1016/j.jmaa.2007.09.065 | MR 2390946 | Zbl 1134.43001
[10] M. Miraoui, N. Yaakoubi: Measure pseudo almost periodic solutions of shunting inhibitory cellular neural networks with mixed delays. Numer. Funct. Anal. Optim. 40 (2019), 571-585. DOI 10.1080/01630563.2018.1561469 | MR 3948375 | Zbl 1464.34092
[11] G. M. N'Guérékata: Almost Automorphic and Almost Periodic Functions in Abstract Spaces. Kluwer Academic, New York (2001). DOI 10.1007/978-1-4757-4482-8 | MR 1880351 | Zbl 1001.43001
[12] G. M. N'Guérékata: Topics in Almost Automorphy. Springer, New York (2005). DOI 10.1007/b139078 | MR 2107829 | Zbl 1073.43004
[13] T.-J. Xiao, J. Liang, J. Zhang: Pseudo almost automorphic solutions to semilinear differential equations in Banach spaces. Semigroup Forum 76 (2008), 518-524. DOI 10.1007/s00233-007-9011-y | MR 2395199 | Zbl 1154.46023
[14] C. Y. Zhang: Integration of vector-valued pseudo-almost periodic functions. Proc. Am. Math. Soc. 121 (1994), 167-174. DOI 10.1090/S0002-9939-1994-1186140-8 | MR 1186140 | Zbl 0818.42003
[15] C. Y. Zhang: Pseudo almost periodic solutions of some differential equations. J. Math. Anal. Appl. 181 (1994), 62-76. DOI 10.1006/jmaa.1994.1005 | MR 1257954 | Zbl 0796.34029
[16] H. Zhu, Q. Zhu, X. Sun, H. Zhou: Existence and exponential stability of pseudo almost automorphic solutions for Cohen-Grossberg neural networks with mixed delays. Adv. Difference Equ. 2016 (2016), Article ID 120, 17 pages. DOI 10.1186/s13662-016-0831-5 | MR 3492135 | Zbl 1419.93054

Affiliations:   Chaouki Aouiti, Hediene Jallouli, University of Carthage, Faculty of Sciences of Bizerta, Department of Mathematics, GAMA Laboratory LR21ES10, BP W, 70 21 Zarzouna, Bizerta, Tunisia, e-mail: chaouki.aouiti@fsb.rnu.tn, jalouli.hedienne@fsb.rnu.tn; Mohsen Miraoui (corresponding author), IPEIK, University of Kairouan, LR11ES53, Kairouan, Tunisia; University of Sfax, Route de l'Aéroport Km 0.5 BP 1169.3029 Sfax, Tunisia, e-mail: miraoui.mohsen@yahoo.fr


 
PDF available at: