Czechoslovak Mathematical Journal, first online, pp. 1-11


Arithmetic genus of integral space curves

Hao Sun

Received March 3, 2017.   First published December 8, 2017.

Abstract:  We give an estimation for the arithmetic genus of an integral space curve which is not contained in a surface of degree $k-1$. Our main technique is the Bogomolov-Gieseker type inequality for $\mathbb{P}^3$ proved by Macri.
Keywords:  space curve; arithmetic genus; Bridgeland stability; Bogomolov-Gieseker inequality
Classification MSC:  14H50, 14F05
DOI:  10.21136/CMJ.2017.0093-17

PDF available at:  Springer   Institute of Mathematics CAS

References:
[1] A. Bayer, A. Bertram, E. Macri, Y. Toda: Bridgeland stability conditions of threefolds II: An application to Fujita's conjecture. J. Algebr. Geom. 23 (2014), 693-710. DOI 10.1090/S1056-3911-2014-00637-8 | MR 3263665 | Zbl 1310.14026
[2] A. Bayer, E. Macri, P. Stellari: The space of stability conditions on abelian threefolds, and on some Calabi-Yau threefolds. Invent. Math. 206 (2016), 869-933. DOI 10.1007/s00222-016-0665-5 | MR 3573975 | Zbl 1360.14057
[3] A. Bayer, E. Macri, Y. Toda: Bridgeland stability conditions on threefolds I: Bogomolov-Gieseker type inequalities. J. Algebr. Geom. 23 (2014), 117-163. DOI 10.1090/S1056-3911-2013-00617-7 | MR 3121850 | Zbl 1306.14005
[4] T. Bridgeland: Stability conditions on triangulated categories. Ann. of Math. (2) 166 (2007), 317-345. DOI 10.4007/annals.2007.166.317 | MR 2373143 | Zbl 1137.18008
[5] G. Castelnuovo: Sui multipli di una serie lineare di gruppi di punti appartenente ad una curva algebrica. Palermo Rend. 7 (1893), 89-110. (In Italian.) DOI 10.1007/BF03012436 | JFM 25.1035.02
[6] L. Gruson, C. Peskine: Genre des courbes de l'espace projectif. Algebraic Geometry. Proc., Tromsø Symp. 1977, Lect. Notes Math. 687, (1978), 31-59. (In French.) DOI 10.1007/BFb0062927 | MR 0527229 | Zbl 0412.14011
[7] G. Halphen: Mèmoire sur la classification des courbes gauches algèbriques. J. Ec. Polyt. 52 (1882), 1-200. (In French.)
[8] D. Happel, I. Reiten, S. O. Smalo: Tilting in abelian categories and quasitilted algebras. Mem. Am. Math. Soc. 575 120 (1996), 88 pages. DOI 10.1090/memo/0575 | MR 1327209 | Zbl 0849.16011
[9] J. Harris: The genus of space curves. Math. Ann. 249 (1980), 191-204. DOI 10.1007/BF01363895 | MR 0579101 | Zbl 0449.14006
[10] R. Hartshorne: On the classification of algebraic space curves II. Algebraic Geometry. Proc. Summer Res. Inst., Brunswick/Maine 1985, part 1, Proc. Symp. Pure Math. 46 (1987), 145-164. DOI 10.1090/pspum/046.1/927954 | MR 0927954 | Zbl 0449.14006
[11] R. Hartshorne, A. Hirschowitz: Nouvelles courbes de bon genre dans l'espace projectif. Math. Ann. 280 (1988), 353-367. (In French.) DOI 10.1007/BF01456330 | MR 0936316 | Zbl 0678.14007
[12] A. Maciocia: Computing the walls associated to Bridgeland stability conditions on projective surfaces. Asian J. Math. 18 (2014), 263-280. DOI 10.4310/AJM.2014.v18.n2.a5 | MR 3217637 | Zbl 1307.14022
[13] E. Macri: A generalized Bogomolov-Gieseker inequality for the three-dimensional projective space. Algebra Number Theory 8 (2014), 173-190. DOI 10.2140/ant.2014.8.173 | MR 3207582 | Zbl 1308.14016
[14] Y. Toda: Bogomolov-Gieseker-type inequality and counting invariants. J. Topol. 6 (2013), 217-250. DOI 10.1112/jtopol/jts037 | MR 3029426 | Zbl 1328.14087

Affiliations:   Hao Sun, Department of Mathematics, Shanghai Normal University, No. 100 Guilin Rd, Shanghai 200234, China, e-mail: hsun@shnu.edu.cn


 
PDF available at: