Czechoslovak Mathematical Journal, Vol. 67, No. 3, pp. 827-837, 2017


On decomposability of finite groups

Ruifang Chen, Xianhe Zhao

Received April 21, 2016.  First published March 2, 2017.

Abstract:  Let $G$ be a finite group. A normal subgroup $N$ of $G$ is a union of several $G$-conjugacy classes, and it is called $n$-decomposable in $G$ if it is a union of $n$ distinct $G$-conjugacy classes. In this paper, we first classify finite non-perfect groups satisfying the condition that the numbers of conjugacy classes contained in its non-trivial normal subgroups are two consecutive positive integers, and we later prove that there is no non-perfect group such that the numbers of conjugacy classes contained in its non-trivial normal subgroups are 2, 3, 4 and 5.
Keywords:  non-perfect group; $G$-conjugacy class; $n$-decomposable group
Classification MSC:  20E45, 20D10
DOI:  10.21136/CMJ.2017.0197-16

PDF available at:  Springer   Myris Trade   Institute of Mathematics CAS

References:
[1] A. R. Ashrafi: On decomposability of finite groups. J. Korean Math. Soc. 41 (2004), 479-487. DOI 10.4134/JKMS.2004.41.3.479 | MR 2050157 | Zbl 1058.20026
[2] A. R. Ashrafi, H. Sahraei: On finite groups whose every normal subgroup is a union of the same number of conjugacy classes. Vietnam J. Math. 30 (2002), 289-294. MR 1933567 | Zbl 1018.20026
[3] A. R. Ashrafi, G. Venkataraman: On finite groups whose every proper normal subgroup is a union of a given number of conjugacy classes. Proc. Indian Acad. Sci., Math. Sci. 114 (2004), 217-224. DOI 10.1007/BF02830000 | MR 2083462 | Zbl 1070.20027
[4] D. Gorenstein: Finite Groups. Chelsea Publishing Company, New York (1980). MR 0569209 | Zbl 0463.20012
[5] X. Guo, R. Chen: On finite $X$-decomposable groups for $X=\{1, 2, 3, 4\}$. Bull. Iranian Math. Soc. 40 (2014), 1243-1262. MR 3273835 | Zbl 06572891
[6] X. Y. Guo, J. Li, K. P. Shum: On finite $X$-decomposable groups for $X=\{1, 2, 4\}$. Sib. Math. J. 53 (2012), 444-449; translation from Sib. Mat. Zh. 53 (2012), 558-565. DOI 10.1134/S0037446612020255 | MR 2978574 | Zbl 1257.20031
[7] I. M. Isaacs: Character Theory of Finite Groups. Dover Publications, New York (1994). MR 1280461 | Zbl 0849.20004
[8] U. Riese, M. A. Shahabi: Subgroups which are the union of four conjugacy classes. Commun. Algebra 29 (2001), 695-701. DOI 10.1081/AGB-100001534 | MR 1841992 | Zbl 0990.20020
[9] H. E. Rose: A Course on Finite Groups. Universitext, Springer, London (2009). DOI 10.1007/978-1-84882-889-6 | MR 2583713 | Zbl 1200.20001
[10] W. J. Shi: A class of special minimal normal subgroups. J. Southwest Teachers College 9 (1984), 9-13 (in Chinese).
[11] J. Wang: A special class of normal subgroups. J. Chengdu Univ. Sci. Technol. 1987 (1987), 115-119 (in Chinese, English summary). MR 1028900 | Zbl 0671.20022

Affiliations:   Ruifang Chen (corresponding author), Xianhe Zhao, School of Mathematics and Information Science, Henan Normal University, No. 46, East of Construction Road, Xinxiang 453007, Henan, P. R. China, e-mail: fang119128@126.com, zhaoxianhe989@163.com

 
PDF available at: