Czechoslovak Mathematical Journal, online first, 16 pp.

Separately radial and radial Toeplitz operators on the projective space and representation theory

Raul Quiroga-Barranco, Armando Sanchez-Nungaray

Received June 8, 2016.  First published March 1, 2017.

Abstract:  We consider separately radial (with corresponding group ${\mathbb{T}}^n$) and radial (with corresponding group ${\rm U}(n))$ symbols on the projective space ${\mathbb{P}^n({\mathbb{C}})}$, as well as the associated Toeplitz operators on the weighted Bergman spaces. It is known that the $C^*$-algebras generated by each family of such Toeplitz operators are commutative (see R. Quiroga-Barranco and A. Sanchez-Nungaray (2011)). We present a new representation theoretic proof of such commutativity. Our method is easier and more enlightening as it shows that the commutativity of the $C^*$-algebras is a consequence of the existence of multiplicity-free representations. Furthermore, our method shows how to extend the current formulas for the spectra of the corresponding Toeplitz operators to any closed group lying between ${\mathbb{T}}^n$ and ${\rm U}(n)$.
Keywords:  Toeplitz operator; projective space
Classification MSC:  47B35, 32A36, 22E46, 32M15
DOI:  10.21136/CMJ.2017.0293-16

PDF available at:  Springer   Myris Trade   Institute of Mathematics CAS

[1] M. Dawson, G. Ólafsson, R. Quiroga-Barranco: Commuting Toeplitz operators on bounded symmetric domains and multiplicity-free restrictions of holomorphic discrete series. J. Funct. Anal. 268 (2015), 1711-1732. DOI 10.1016/j.jfa.2014.12.002 | MR 3315576 | Zbl 1320.47029
  [2] M. Engliš: Density of algebras generated by Toeplitz operators on Bergman spaces. Ark. Mat. 30 (1992), 227-243. DOI 10.1007/BF02384872 | MR 1289753 | Zbl 0784.46036
  [3] R. Goodman, N. R. Wallach: Symmetry, Representations, and Invariants. Graduate Texts in Mathematics 255, Springer, New York (2009). DOI 10.1007/978-0-387-79852-3 | MR 2522486 | Zbl 1173.22001
  [4] S. Grudsky, A. Karapetyants, N. Vasilevski: Toeplitz operators on the unit ball in $\C^n$ with radial symbols. J. Oper. Theory 49 (2003), 325-346. MR 1991742 | Zbl 1027.32010
  [5] S. Grudsky, R. Quiroga-Barranco, N. Vasilevski: Commutative $C^*$-algebras of Toeplitz operators and quantization on the unit disk. J. Funct. Anal. 234 (2006), 1-44. DOI 10.1016/j.jfa.2005.11.015 | MR 2214138 | Zbl 1100.47023
  [6] M. A. Morales-Ramos, A. Sánchez-Nungaray, J. Ramírez-Ortega: Toeplitz operators with quasi-separately radial symbols on the complex projective space. Bol. Soc. Mat. Mex., III. Ser. 22 (2016), 213-227. DOI 10.1007/s40590-015-0073-7 | MR 3473758 | Zbl 06562396
  [7] R. Quiroga-Barranco: Separately radial and radial Toeplitz operators on the unit ball and representation theory. Bol. Soc. Mat. Mex., III. Ser. 22 (2016), 605-623. DOI 10.1007/s40590-016-0111-0 | MR 3544156 | Zbl 06646397
  [8] R. Quiroga-Barranco, A. Sanchez-Nungaray: Commutative $C^*$-algebras of Toeplitz operators on complex projective spaces. Integral Equations Oper. Theory 71 (2011), 225-243. DOI 10.1007/s00020-011-1897-9 | MR 2838143 | Zbl 1251.47065
  [9] R. Quiroga-Barranco, N. Vasilevski: Commutative $C^*$-algebras of Toeplitz operators on the unit ball, I.: Bargmann-type transforms and spectral representations of Toeplitz operators. Integral Equations Oper. Theory 59 (2007), 379-419. DOI 10.1007/s00020-007-1537-6 | MR 2363015 | Zbl 1144.47024
  [10] R. Quiroga-Barranco, N. Vasilevski: Commutative $C^*$-algebras of Toeplitz operators on the unit ball, II.: Geometry of the level sets of symbols. Integral Equations Oper. Theory 60 (2008), 89-132. DOI 10.1007/s00020-007-1540-y | MR 2380317 | Zbl 1144.47025

Access to the full text of journal articles on this site is restricted to the subscribers of Myris Trade. To activate your access, please contact Myris Trade at
Subscribers of Springer need to access the articles on their site, which is

Affiliations:   Raul Quiroga-Barranco, Centro de Investigación en Matemáticas, De Jalisco S-N, Valenciana, 36240 Guanajuato, Mexico, e-mail:; Armando Sanchez-Nungaray, Facultad de Matemáticas, Universidad Veracruzana, Gonzalo Aguirre Beltrán, Isleta, 91090 Xalapa Enríquez, Veracruz, Mexico, e-mail:

PDF available at: