Czechoslovak Mathematical Journal, Vol. 67, No. 1, pp. 73-86, 2017


Minimal Reeb vector fields on almost Kenmotsu manifolds

Yaning Wang

Received July 13, 2015.  First published February 24, 2017.

Abstract:  A necessary and sufficient condition for the Reeb vector field of a three dimensional non-Kenmotsu almost Kenmotsu manifold to be minimal is obtained. Using this result, we obtain some classifications of some types of $(k,\mu,\nu)$-almost Kenmotsu manifolds. Also, we give some characterizations of the minimality of the Reeb vector fields of $(k,\mu,\nu)$-almost Kenmotsu manifolds. In addition, we prove that the Reeb vector field of an almost Kenmotsu manifold with conformal Reeb foliation is minimal.
Keywords:  almost Kenmotsu manifold; Reeb vector field; minimal vector field; harmonic vector field; Lie group
Classification MSC:  53D15, 53C25, 53C43
DOI:  10.21136/CMJ.2017.0377-15


References:
[1] D. E. Blair: Riemannian Geometry of Contact and Symplectic Manifolds. Progress in Mathematics 203, Birkhäuser, Boston (2010). DOI 10.1007/978-0-8176-4959-3 | MR 2682326 | Zbl 1246.53001
[2] E. Boeckx, L. Vanhecke: Harmonic and minimal vector fields on tangent and unit tangent bundles. Differ. Geom. Appl. 13 (2000), 77-93. DOI 10.1016/S0926-2245(00)00021-8 | MR 1775222 | Zbl 0973.53053
[3] J. T. Cho, M. Kimura: Reeb flow symmetry on almost contact three-manifolds. Differ. Geom. Appl. 35 (2014), 266-273. DOI 10.1016/j.difgeo.2014.05.002 | MR 3254308 | Zbl 1319.53094
[4] G. Dileo, A. M. Pastore: Almost Kenmotsu manifolds and local symmetry. Bull. Belg. Math. Soc. Simon Stevin 14 (2007), 343-354. MR 2341570 | Zbl 1148.53034
[5] G. Dileo, A. M. Pastore: Almost Kenmotsu manifolds and nullity distributions. J. Geom. 93 (2009), 46-61. DOI 10.1007/s00022-009-1974-2 | MR 2501208 | Zbl 1204.53025
[6] G. Dileo, A. M. Pastore: Almost Kenmotsu manifolds with a condition of $\eta$-parallelism. Differ. Geom. Appl. 27 (2009), 671-679. DOI 10.1016/j.difgeo.2009.03.007 | MR 2567845 | Zbl 1183.53024
[7] O. Gil-Medrano: Relationship between volume and energy of vector fields. Differ. Geom. Appl. 15 (2001), 137-152. DOI 10.1016/S0926-2245(01)00053-5 | MR 1857559 | Zbl 1066.53068
[8] O. Gil-Medrano, E. Llinares-Fuster: Minimal unit vector fields. Tohoku Math. J., II. 54 (2002), 71-84. DOI 10.2748/tmj/1113247180 | MR 1878928 | Zbl 1006.53053
[9] H. Gluck, W. Ziller: On the volume of a unit vector field on the three-sphere. Comment. Math. Helv. 61 (1986), 177-192. DOI 10.1007/BF02621910 | MR 0856085 | Zbl 0605.53022
[10] J. C. González-Dávila, L. Vanhecke: Examples of minimal unit vector fields. Ann. Global Anal. Geom. 18 (2000), 385-404. DOI 10.1023/A:1006788819180 | MR 1795104 | Zbl 1005.53026
[11] J. C. González-Dávila, L. Vanhecke: Minimal and harmonic characteristic vector fields on three-dimensional contact metric manifolds. J. Geom. 72 (2001), 65-76. DOI 10.1007/s00022-001-8570-4 | MR 1891456 | Zbl 1005.53039
[12] J. C. González-Dávila, L. Vanhecke: Invariant harmonic unit vector fields on Lie groups. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 5 (2002), 377-403. MR 1911197 | Zbl 1097.53033
[13] D. Janssens, L. Vanhecke: Almost contact structures and curvature tensors. Kodai Math. J. 4 (1981), 1-27. DOI 10.2996/kmj/1138036310 | MR 0615665 | Zbl 0472.53043
[14] K. Kenmotsu: A class of almost contact Riemannian manifolds. Tohoku Math. J., II. Ser. 24 (1972), 93-103. DOI 10.2748/tmj/1178241594 | MR 0319102 | Zbl 0245.53040
[15] T. Koufogiorgos, M. Markellos, V. J. Papantoniou: The harmonicity of the Reeb vector field on contact metric 3-manifolds. Pac. J. Math. 234 (2008), 325-344. DOI 10.2140/pjm.2008.234.325 | MR 2373452 | Zbl 1154.53052
[16] J. W. Milnor: Curvature of left invariant metrics on Lie groups. Adv. Math. 21 (1976), 293-329. DOI 10.1016/S0001-8708(76)80002-3 | MR 0425012 | Zbl 0341.53030
[17] Z. Olszak: Local conformal almost cosymplectic manifolds. Colloq. Math. 57 (1989), 73-87. MR 1028604 | Zbl 0702.53025
[18] A. M. Pastore, V. Saltarelli: Almost Kenmotsu manifolds with conformal Reeb foliation. Bull. Belg. Math. Soc. Simon Stevin 18 (2011), 655-666. MR 2907610 | Zbl 1237.53031
[19] A. M. Pastore, V. Saltarelli: Generalized nullity distributions on almost Kenmotsu manifolds. Int. Electron. J. Geom. 4 (2011), 168-183. MR 2929587 | Zbl 1308.53118
[20] D. Perrone: Harmonic characteristic vector fields on contact metric three-manifolds. Bull. Aust. Math. Soc. 67 (2003), 305-315. DOI 10.1017/S0004972700033773 | MR 1972720 | Zbl 1034.53050
[21] D. Perrone: Almost contact metric manifolds whose Reeb vector field is a harmonic section. Acta Math. Hung. 138 (2013), 102-126. DOI 10.1007/s10474-012-0228-1 | MR 3015965 | Zbl 1299.53132
[22] D. Perrone: Minimal Reeb vector fields on almost cosymplectic manifolds. Kodai Math. J. 36 (2013), 258-274. DOI 10.2996/kmj/1372337517 | MR 3081246 | Zbl 1277.53083
[23] V. Saltarelli: Three-dimensional almost Kenmotsu manifolds satisfying certain nullity conditions. Bull. Malays. Math. Sci. Soc. 38 (2015), 437-459. DOI 10.1007/s40840-014-0029-5 | MR 3323720 | Zbl 1317.53044
[24] E. Vergara-Diaz, C. M. Wood: Harmonic almost contact structures. Geom. Dedicata 123 (2006), 131-151. DOI 10.1007/s10711-006-9112-x | MR 2299730 | Zbl 1118.53043

Affiliations:   Yaning Wang, Henan Engineering Laboratory for Big Data Statistical Analysis and Optimal Control, School of Mathematics and Information Sciences, Henan Normal University, No. 46 in Eastern Jianshe Street, Xinxiang 453007, Henan, P. R. China, e-mail: wyn051@163.com

Springer subscribers can access the papers on Springer website.
Access to full texts on this site is restricted to subscribers of Myris Trade. To activate your access, please send an e-mail to myris@myris.cz.
[List of online first articles] [Contents of Czechoslovak Mathematical Journal] [Full text of the older issues of Czechoslovak Mathematical Journal at DML-CZ]

 
PDF available at: