Czechoslovak Mathematical Journal, Vol. 67, No. 1, pp. 87-95, 2017


Relative Gorenstein injective covers with respect to a semidualizing module

Elham Tavasoli, Maryam Salimi

Received July 13, 2015.  First published February 24, 2017.

Abstract:  Let $R$ be a commutative Noetherian ring and let $C$ be a semidualizing $R$-module. We prove a result about the covering properties of the class of relative Gorenstein injective modules with respect to $C$ which is a generalization of Theorem 1 by Enochs and Iacob (2015). Specifically, we prove that if for every $G_C$-injective module $G$, the character module $G^+$ is $G_C$-flat, then the class $\mathcal{GI}_C(R)\cap\mathcal{A}_C(R)$ is closed under direct sums and direct limits. Also, it is proved that under the above hypotheses the class $\mathcal{GI}_C(R)\cap\mathcal{A}_C(R)$ is covering.
Keywords:  semidualizing module; $G_C$-flat module; $G _C$-injective module; cover; envelope
Classification MSC:  13D05, 13D45, 18G20
DOI:  10.21136/CMJ.2017.0379-15


References:
[1] M. Auslander, M. Bridger: Stable Module Theory. Memoirs of the American Mathematical Society 94 American Mathematical Society, Providence (1969). DOI 10.1090/memo/0094 | MR 0269685 | Zbl 0204.36402
[2] L. L. Avramov, H. B. Foxby: Ring homomorphisms and finite Gorenstein dimension. Proc. Lond. Math. Soc., III. Ser. 75 (1997), 241-270. DOI 10.1112/S0024611597000348 | MR 1455856 | Zbl 0901.13011
[3] L. W. Christensen: Semi-dualizing complexes and their Auslander categories. Trans. Am. Math. Soc. 353 (2001), 1839-1883. DOI 10.1090/S0002-9947-01-02627-7 | MR 1813596 | Zbl 0969.13006
[4] E. E. Enochs, H. Holm: Cotorsion pairs associated with Auslander categories. Isr. J. Math. 174 253-268 (2009). DOI 10.1007/s11856-009-0113-y | MR 2581218 | Zbl 1184.13029
[5] E. E. Enochs, A. Iacob: Gorenstein injective covers and envelopes over Noetherian rings. Proc. Am. Math. Soc. 143 (2015), 5-12. DOI 10.1090/S0002-9939-2014-12232-5 | MR 3272726 | Zbl 1307.18013
[6] E. E. Enochs, O. M. G. Jenda: Relative Homological Algebra. De Gruyter Expositions in Mathematics 30 Walter de Gruyter, Berlin (2000). DOI 10.1515/9783110215212 | MR 2857612 | Zbl 1238.13001
[7] E. E. Enochs, O. M. G. Jenda, J. A. López-Ramos: The existence of Gorenstein flat covers. Math. Scand. 94 (2004), 46-62. DOI 10.7146/math.scand.a-14429 | MR 2032335 | Zbl 1061.16003
[8] E. E. Enochs, J. A. López-Ramos: Kaplansky classes. Rend. Semin. Math. Univ. Padova 107 (2002), 67-79. MR 1926201 | Zbl 1099.13019
[9] H. B. Foxby: Gorenstein modules and related modules. Math. Scand. 31 (1972), 267-284. MR 0327752 | Zbl 0272.13009
[10] E. S. Golod: G-dimension and generalized perfect ideals. Tr. Mat. Inst. Steklova 165 (1984), Russian 62-66. MR 0752933 | Zbl 0577.13008
[11] M. Hashimoto: Auslander-Buchweitz Approximations of Equivariant Modules. London Mathematical Society Lecture Note Series 282 Cambridge University Press, Cambridge (2000). DOI 10.1017/CBO9780511565762 | MR 1797672 | Zbl 0993.13007
[12] H. Holm: Gorenstein homological dimensions. J. Pure Appl. Algebra 189 (2004), 167-193. DOI 10.1016/j.jpaa.2003.11.007 | MR 2038564 | Zbl 1050.16003
[13] H. Holm, P. Jørgensen: Semi-dualizing modules and related Gorenstein homological dimension. J. Pure Appl. Algebra 205 (2006), 423-445. DOI 10.1016/j.jpaa.2005.07.010 | MR 2203625 | Zbl 1094.13021
[14] H. Holm, P. Jørgensen: Cotorsion pairs induced by duality pairs. J. Commut. Algebra 1 (2009), 621-633. DOI 10.1216/JCA-2009-1-4-621 | MR 2575834 | Zbl 1184.13042
[15] H. Krause: The stable derived category of a noetherian scheme. Compos. Math. 141 (2005), 1128-1162. DOI 10.1112/S0010437X05001375 | MR 2157133 | Zbl 1090.18006
[16] M. Nagata: Local Rings. Interscience Tracts in Pure and Applied Mathematics 13 Interscience Publisher a division of John Wiley and Sons, New York (1962). MR 0155856 | Zbl 0123.03402
[17] I. Reiten: The converse of a theorem of Sharp on Gorenstein modules. Proc. Am. Math. Soc. 32 (1972), 417-420. DOI 10.1090/S0002-9939-1972-0296067-7 | MR 0296067 | Zbl 0235.13016
[18] M. Salimi, E. Tavasoli, S. Yassemi: Gorenstein homological dimension with respect to a semidualizing module and a generalization of a theorem of Bass. Commun. Algebra 42 (2014), 2213-2221. DOI 10.1080/00927872.2012.717654 | MR 3169700 | Zbl 1291.13026
[19] S. Sather-Wagstaff: Semidualizing Modules. https://ssather.people.clemson.edu/DOCS/sdm.pdf.
[20] S. Sather-Wagstaff, T. Sharif, D. White: Stability of Gorenstein categories. J. Lond. Math. Soc., II. Ser. 77 (2008), 481-502. DOI 10.1112/jlms/jdm124 | MR 2400403 | Zbl 1140.18010
[21] S. Sather-Wagstaff, T. Sharif, D. White: AB-contexts and stability for Gorenstein flat modules with respect to semidualizing modules. Algebr. Represent. Theory 14 (2011), 403-428. DOI 10.1007/s10468-009-9195-9 | MR 2785915 | Zbl 1317.13029
[22] R. Takahashi, D. White: Homological aspects of semidualizing modules. Math. Scand. 106 (2010), 5-22. DOI 10.7146/math.scand.a-15121 | MR 2603458 | Zbl 1193.13012
[23] W. V. Vasconcelos: Divisor Theory in Module Categories. North-Holland Mathematics Studies 14. Notas de Matematica 5 North-Holland Publishing, Amsterdam (1974). MR 0498530 | Zbl 0296.13005
[24] D. White: Gorenstein projective dimension with respect to a semidualizing module. J. Commut. Algebra. 2 (2010), 111-137. DOI 10.1216/JCA-2010-2-1-111 | MR 2607104 | Zbl 1237.13029

Affiliations:   Elham Tavasoli, Maryam Salimi, Department of Mathematics, East Tehran Branch, Islamic Azad University, Tehran, Iran, e-mail: elhamtavasoli@ipm.ir, maryamsalimi@ipm.ir

Springer subscribers can access the papers on Springer website.
Access to full texts on this site is restricted to subscribers of Myris Trade. To activate your access, please send an e-mail to myris@myris.cz.
[List of online first articles] [Contents of Czechoslovak Mathematical Journal] [Full text of the older issues of Czechoslovak Mathematical Journal at DML-CZ]

 
PDF available at: