Czechoslovak Mathematical Journal, Vol. 67, No. 4, pp. 1059-1070, 2017

Pointwise Fourier inversion of distributions on spheres

Francisco Javier González Vieli

Received July 27, 2016.   First published October 6, 2017.

Abstract:  Given a distribution $T$ on the sphere we define, in analogy to the work of Łojasiewicz, the value of $T$ at a point $\xi$ of the sphere and we show that if $T$ has the value $\tau$ at $\xi$, then the Fourier-Laplace series of $T$ at $\xi$ is Abel-summable to $\tau$.
Keywords:  distribution; sphere; Fourier-Laplace series; Abel summability
Classification MSC:  42C10, 46F12
DOI:  10.21136/CMJ.2017.0403-16

[1] S. Axler, P. Bourdon, W. Ramey: Harmonic Function Theory. Graduate Texts in Mathematics 137, Springer, New York (2001). DOI 10.1007/b97238 | MR 1805196 | Zbl 0959.31001
[2] R. Estrada, R. P. Kanwal: Distributional boundary values of harmonic and analytic functions. J. Math. Anal. Appl. 89 (1982), 262-289. DOI 10.1016/0022-247X(82)90102-0 | MR 0672200 | Zbl 0511.31008
[3] F. J. González Vieli: Fourier inversion of distributions on the sphere. J. Korean Math. Soc. 41 (2004), 755-772. DOI 10.4134/JKMS.2004.41.4.755 | MR 2068151 | Zbl 1066.46031
[4] H. Groemer: Geometric Applications of Fourier Series and Spherical Harmonics. Encyclopedia of Mathematics and Its Applications 61, Cambridge University Press, Cambridge (1996). DOI 10.1017/CBO9780511530005 | MR 1412143 | Zbl 0877.52002
[5] S. Kostadinova, J. Vindas: Multiresolution expansions of distributions: pointwise convergence and quasiasymptotic behavior. Acta Appl. Math. 138 (2015), 115-134. DOI 10.1007/s10440-014-9959-z | MR 3365583 | Zbl 1322.42045
[6] S. Łojasiewicz: Sur la fixation des variables dans une distribution. Stud. Math. 17 (1958), 1-64. (In French.) MR 0107167 | Zbl 0086.09501
[7] E. M. Stein, G. Weiss: Introduction to Fourier Analysis on Euclidean Spaces. Princeton Mathematical Series 32, Princeton University Press, Princeton (1971). DOI 10.1515/9781400883899 | MR 0304972 | Zbl 0232.42007
[8] J. Vindas, R. Estrada: Distributional point values and convergence of Fourier series and integrals. J. Fourier Anal. Appl. 13 (2007), 551-576. DOI 10.1007/s00041-006-6015-z | MR 2355012 | Zbl 1138.46030
[9] G. Walter: Pointwise convergence of distribution expansions. Stud. Math. 26 (1966), 143-154. MR 0190624 | Zbl 0144.37401
[10] G. G. Walter, X. Shen: Wavelets and Other Orthogonal Systems. Studies in Advanced Mathematics, Chapman & Hall/CRC, Boca Raton (2001). MR 1887929 | Zbl 1005.42018

Affiliations:   Francisco Javier González Vieli, Montoie 45, 1007 Lausanne, Switzerland, e-mail:

Springer subscribers can access the papers on Springer website.
Access to full texts on this site is restricted to subscribers of Myris Trade. To activate your access, please send an e-mail to
[List of online first articles] [Contents of Czechoslovak Mathematical Journal] [Full text of the older issues of Czechoslovak Mathematical Journal at DML-CZ]

PDF available at: