Czechoslovak Mathematical Journal, Vol. 67, No. 4, pp. 1095-1103, 2017


Maps on upper triangular matrices preserving zero products

Roksana Słowik

Received August 5, 2016.   First published October 9, 2017.

Abstract:  Consider $\mathcal T_n(F)$ - the ring of all $n\times n$ upper triangular matrices defined over some field $F$. A map $\phi$ is called a zero product preserver on ${\mathcal T}_n(F)$ in both directions if for all $x,y\in{\mathcal T}_n(F)$ the condition $xy=0$ is satisfied if and only if $\phi(x)\phi(y)=0$. In the present paper such maps are investigated. The full description of bijective zero product preservers is given. Namely, on the set of the matrices that are invertible, the map $\phi$ may act in any bijective way, whereas for the zero divisors and zero matrix one can write $\phi$ as a composition of three types of maps. The first of them is a conjugacy, the second one is an automorphism induced by some field automorphism, and the third one transforms every matrix $x$ into a matrix $x'$ such that $\{y\in\mathcal T_n(F) xy=0\}=\{y\in\mathcal T_n(F) x'y=0\}$, $\{y\in\mathcal T_n(F) yx=0\}=\{y\in\mathcal T_n(F) yx'=0\}$.
Keywords:  zero product preserver; upper triangular matrix
Classification MSC:  15A99, 16U99
DOI:  10.21136/CMJ.2017.0416-16

PDF available at:  Springer   Myris Trade   Institute of Mathematics CAS

References:
[1] J. Alaminos, M. Brešar, J. Extremera, A. R. Villena: Maps preserving zero products. Studia Math. 193 (2009), 131-159. DOI 10.4064/sm193-2-3 | MR 2515516 | Zbl 1168.47029
[2] I. Beck: Coloring of commutative rings. J. Algebra 116 (1988), 208-226. DOI 10.1016/0021-8693(88)90202-5 | MR 0944156 | Zbl 0654.13001
[3] P. Botta, S. Pierce, W. Watkins: Linear transformations that preserve the nilpotent matrices. Pac. J. Math. 104 (1983), 39-46. DOI 10.2140/pjm.1983.104.39 | MR 0683726 | Zbl 0446.15002
[4] I. Božić, Z. Petrović: Zero-divisor graphs of matrices over commutative rings. Commun. Algebra 37 (2009), 1186-1192. DOI 10.1080/00927870802465951 | MR 2510978 | Zbl 1185.16031
[5] M. Burgos, J. Sánchez-Ortega: On mappings preserving zero products. Linear Multilinear Algebra 61 (2013), 323-335. DOI 10.1080/03081087.2012.678344 | MR 3003427 | Zbl 1281.15029
[6] M. A. Chebotar, W.-F. Ke, P.-H. Lee: On maps preserving square-zero matrices. J. Algebra 289 (2005), 421-445. DOI 10.1016/j.jalgebra.2005.01.018 | MR 2142380 | Zbl 1094.16022
[7] M. A. Chebotar, W.-F. Ke, P.-H. Lee, N.-C. Wong: Mappings preserving zero products. Stud. Math. 155 (2003), 77-94. DOI 10.4064/sm155-1-6 | MR 1961162 | Zbl 1032.46063
[8] T. Fenstermacher, E. Gegner: Zero-divisor graphs of $2\times 2$ upper triangular matrix rings over $\Bbb Z_n$. Missouri J. Math. Sci. 26 (2014), 151-167. MR 3293812 | Zbl 1308.05065
[9] J. Hou, L. Zhao: Zero-product preserving additive maps on symmetric operator spaces and self-adjoint operator spaces. Linear Algebra Appl. 399 (2005), 235-244. DOI 10.1016/j.laa.2004.12.002 | MR 2151936 | Zbl 1068.47040
[10] B. Li: Zero-divisor graph of triangular matrix rings over commutative rings. Int. J. Algebra 5 (2011), 255-260. MR 2803507 | Zbl 1228.16026
[11] A. Li, R. P. Tucci: Zero divisor graphs of upper triangular matrix rings. Comm. Algebra 41 (2013), 4622-4636. DOI 10.1080/00927872.2012.706841 | MR 3169542 | Zbl 1291.16023
[12] P. Šemrl: Linear mappings preserving square-zero matrices. Bull. Aust. Math. Soc. 48 (1993), 365-370. DOI 10.1017/S0004972700015811 | MR 1248039 | Zbl 0795.15002
[13] R. Słowik: Maps on infinite triangular matrices preserving idempotents. Linear Multilinear Algebra 62 (2014), 938-964. DOI 10.1080/03081087.2013.801965 | MR 3232670 | Zbl 1305.15064
[14] L. Wang: A note on automorphisms of the zero-divisor graph of upper triangular matrices. Linear Algebra Appl. 465 (2015), 214-220. DOI 10.1016/j.laa.2014.09.035 | MR 3274672 | Zbl 1312.16026
[15] W. J. Wong: Maps on simple algebras preserving zero products I. The associative case. Pac. J. Math. 89 (1980), 229-247. DOI 10.2140/pjm.1980.89.229 | MR 0596933 | Zbl 0405.16006
[16] D. Wong, X. Ma, J. Zhou: The group of automorphisms of a zero-divisor graph based on rank one upper triangular matrices. Linear Algebra Appl. 460 (2014), 242-258. DOI 10.1016/j.laa.2014.07.041 | MR 3250541 | Zbl 1300.05187

Affiliations:   Roksana Słowik, Silesian University of Technology, Kaszubska 23, 44-100 Gliwice, Poland, e-mail: roksana.slowik@gmail.com

Springer subscribers can access the papers on Springer website.
Access to full texts on this site is restricted to subscribers of Myris Trade. To activate your access, please send an e-mail to myris@myris.cz.
[List of online first articles] [Contents of Czechoslovak Mathematical Journal] [Full text of the older issues of Czechoslovak Mathematical Journal at DML-CZ]

 
PDF available at: