Czechoslovak Mathematical Journal, first online, pp. 1-11


Unicyclic graphs with bicyclic inverses

Swarup Kumar Panda

Received August 10, 2016.   First published October 12, 2017

Abstract:  A graph is nonsingular if its adjacency matrix $A(G)$ is nonsingular. The inverse of a nonsingular graph $G$ is a graph whose adjacency matrix is similar to $A(G)^{-1}$ via a particular type of similarity. Let $\mathcal{H}$ denote the class of connected bipartite graphs with unique perfect matchings. Tifenbach and Kirkland (2009) characterized the unicyclic graphs in $\mathcal{H}$ which possess unicyclic inverses. We present a characterization of unicyclic graphs in $\mathcal{H}$ which possess bicyclic inverses.
Keywords:  adjacency matrix; unicyclic graph; bicyclic graph; inverse graph; perfect matching
Classification MSC:  05C50, 15A09
DOI:  10.21136/CMJ.2017.0429-16

PDF available at:  Springer   Institute of Mathematics CAS

References:
[1] S. Akbari, S. J. Kirkland: On unimodular graphs. Linear Algebra Appl. 421 (2007), 3-15. DOI 10.1016/j.laa.2006.10.017 | MR 2290681 | Zbl 1108.05060
[2] S. Barik, M. Neumann, S. Pati: On nonsingular trees and a reciprocal eigenvalue property. Linear Multilinear Algebra 54 (2006), 453-465. DOI 10.1080/03081080600792897 | MR 2259602 | Zbl 1119.05064
[3] F. Buckley, L. L. Doty, F. Harary: On graphs with signed inverses. Networks 18 (1988), 151-157. DOI 10.1002/net.3230180302 | MR 0953918 | Zbl 0646.05061
[4] D. M. Cvetković, I. Gutman, S. K. Simić: On self-pseudo-inverse graphs. Publ. Elektroteh. Fak., Univ. Beogr., Ser. Mat. Fiz. (1978), 602-633, (1979), 111-117. MR 0580431 | Zbl 0437.05047
[5] R. Frucht, F. Harary: On the corona of two graphs. Aequationes Mathematicae 4 (1970), 322-325. DOI 10.1007/BF01844162 | MR 0281659 | Zbl 0198.29302
[6] C. D. Godsil: Inverses of trees. Combinatorica 5 (1985), 33-39. DOI 10.1007/BF02579440 | MR 0803237 | Zbl 0578.05049
[7] F. Harary: On the notion of balance of a signed graph. Mich. Math. J. 2 (1953), 143-146. DOI 10.1307/mmj/1028989917 | MR 0067468 | Zbl 0056.42103
[8] F. Harary, H. Minc: Which nonnegative matrices are self-inverse?. Math. Mag. 49 (1976), 91-92. DOI 10.2307/2689442 | MR 0396629 | Zbl 0321.15008
[9] S. K. Panda, S. Pati: On the inverse of a class of bipartite graphs with unique perfect matchings. Electron. J. Linear Algebra 29 (2015), 89-101. DOI 10.13001/1081-3810.2865 | MR 3414587 | Zbl 1323.05107
[10] S. K. Panda, S. Pati: On some graphs which possess inverses. Linear Multilinear Algebra 64 (2016), 1445-1459. DOI 10.1080/03081087.2015.1091434 | MR 3490639 | Zbl 1341.05216
[11] S. Pavlíková, J. Krč-Jediný: On the inverse and the dual index of a tree. Linear Multilinear Algebra 28 (1990), 93-109. DOI 10.1080/03081089008818034 | MR 1077739 | Zbl 0745.05018
[12] R. Simion, D.-S. Cao: Solution to a problem of C. D. Godsil regarding bipartite graphs with unique perfect matching. Combinatorica 9 (1989), 85-89. DOI 10.1007/BF02122687 | MR 1010303 | Zbl 0688.05056
[13] R. M. Tifenbach: Strongly self-dual graphs. Linear Algebra Appl. 435 (2011), 3151-3167. DOI 10.1016/j.laa.2011.05.010 | MR 2831603 | Zbl 1226.05170
[14] R. M. Tifenbach, S. J. Kirkland: Directed intervals and the dual of a graph. Linear Algebra Appl. 431 (2009), 792-807. DOI 10.1016/j.laa.2009.03.032 | MR 2535551 | Zbl 1226.05171
[15] K. Yates: Hückel Molecular Orbital Theory. Academic Press (1978). DOI 10.1016/b978-0-12-768850-3.x5001-9

Affiliations:   Swarup Kumar Panda, Theoretical Statistics and Mathematics Unit, Indian Statistical Institute Delhi, 7 S.J.S. Sansanwal Marg, New Delhi 110016, India, e-mail: panda.iitg@gmail.com

 
PDF available at: