Czechoslovak Mathematical Journal, Vol. 68, No. 1, pp. 267-276, 2018

Representations of the general linear group over symmetry classes of polynomials

Yousef Zamani, Mahin Ranjbari

Received August 28, 2016.  First published May 4, 2017.

Abstract:  Let $V$ be the complex vector space of homogeneous linear polynomials in the variables $x_1, \ldots, x_m$. Suppose $G$ is a subgroup of $S_m$, and $\chi$ is an irreducible character of $G$. Let $H_d(G,\chi)$ be the symmetry class of polynomials of degree $d$ with respect to $G$ and $\chi$. For any linear operator $T$ acting on $V$, there is a (unique) induced operator $K_{\chi} (T)\in{\rm End}(H_d(G,\chi))$ acting on symmetrized decomposable polynomials by $K_{\chi}(T)(f_1\ast f_2\ast\ldots\ast f_d)=Tf_1\ast Tf_2\ast\ldots\ast Tf_d.$ In this paper, we show that the representation $T\mapsto K_{\chi} (T)$ of the general linear group $GL(V)$ is equivalent to the direct sum of $\chi(1)$ copies of a representation (not necessarily irreducible) $T\mapsto B_{\chi}^G(T)$.
Keywords:  symmetry class of polynomials; general linear group; representation; irreducible character; induced operator
Classification MSC:  20C15, 15A69, 05E05
DOI:  10.21136/CMJ.2017.0458-16

PDF available at:  Springer   Myris Trade   Institute of Mathematics CAS

[1] E. Babaei, Y. Zamani: Symmetry classes of polynomials associated with the dihedral group. Bull. Iran. Math. Soc. 40 (2014), 863-874. MR 3255403 | Zbl 1338.05271
[2] E. Babaei, Y. Zamani: Symmetry classes of polynomials associated with the direct product of permutation groups. Int. J. Group Theory 3 (2014), 63-69. MR 3213989 | Zbl 1330.05159
[3] E. Babaei, Y. Zamani, M. Shahryari: Symmetry classes of polynomials. Commun. Algebra 44 (2016), 1514-1530. DOI 10.1080/00927872.2015.1027357 | MR 3473866 | Zbl 1338.05272
[4] I. M. Isaacs: Character Theory of Finite Groups. Pure and Applied Mathematics 69, Academic Press, New York (1976). MR 0460423 | Zbl 0337.20005
[5] R. Merris: Multilinear Algebra. Algebra, Logic and Applications 8, Gordon and Breach Science Publishers, Amsterdam (1997). MR 1475219 | Zbl 0892.15020
[6] M. Ranjbari, Y. Zamani: Induced operators on symmetry classes of polynomials. Int. J. Group Theory 6 (2017), 21-35.
[7] K. Rodtes: Symmetry classes of polynomials associated to the semidihedral group and o-bases. J. Algebra Appl. 13 (2014), Article ID 1450059, 7 pages. DOI 10.1142/S0219498814500595 | MR 3225126 | Zbl 1297.05243
[8] M. Shahryari: Relative symmetric polynomials. Linear Algebra Appl. 433 (2010), 1410-1421. DOI 10.1016/j.laa.2010.05.020 | MR 2680267 | Zbl 1194.05162
[9] Y. Zamani, E. Babaei: Symmetry classes of polynomials associated with the dicyclic group. Asian-Eur. J. Math. 6 (2013), Article ID 1350033, 10 pages. DOI 10.1142/S1793557113500332 | MR 3130082 | Zbl 1277.05168
[10] Y. Zamani, E. Babaei: The dimensions of cyclic symmetry classes of polynomials. J. Algebra Appl. 13 (2014), Article ID 1350085, 10 pages. DOI 10.1142/S0219498813500850 | MR 3119646 | Zbl 1290.05156
[11] Y. Zamani, M. Ranjbari: Induced operators on the space of homogeneous polynomials. Asian-Eur. J. Math. 9 (2016), Article ID 1650038, 15 pages. DOI 10.1142/S1793557116500388 | MR 3486726 | Zbl 06580479

Affiliations:   Yousef Zamani (corresponding author), Mahin Ranjbari, Department of Mathematics, Faculty of Sciences, Sahand University of Technology, P.O. Box 51335/1996, Tabriz, East Azerbaijan, Iran, e-mail:,

Springer subscribers can access the papers on Springer website.
Access to full texts on this site is restricted to subscribers of Myris Trade. To activate your access, please send an e-mail to
[List of online first articles] [Contents of Czechoslovak Mathematical Journal] [Full text of the older issues of Czechoslovak Mathematical Journal at DML-CZ]

PDF available at: