Czechoslovak Mathematical Journal, Vol. 67, No. 1, pp. 207-217, 2017

Hilbert-Schmidt Hankel operators with anti-holomorphic symbols on complete pseudoconvex Reinhardt domains

Mehmet Çelik, Yunus E. Zeytuncu

Received September 2, 2015.  First published February 24, 2017.

Abstract:  On complete pseudoconvex Reinhardt domains in $\mathbb{C}^2$, we show that there is no nonzero Hankel operator with anti-holomorphic symbol that is Hilbert-Schmidt. In the proof, we explicitly use the pseudoconvexity property of the domain. We also present two examples of unbounded non-pseudoconvex domains in $\mathbb{C}^2$ that admit nonzero Hilbert-Schmidt Hankel operators with anti-holomorphic symbols. In the first example the Bergman space is finite dimensional. However, in the second example the Bergman space is infinite dimensional and the Hankel operator $H_{\bar{z}_1 \bar{z}_2}$ is Hilbert-Schmidt.
Keywords:  canonical solution operator for $\overline{\partial}$-problem; Hankel operator; Hilbert-Schmidt operator
Classification MSC:  47B35, 32A36, 47B10
DOI:  10.21136/CMJ.2017.0471-15

[1] J. Arazy: Boundedness and compactness of generalized Hankel operators on bounded symmetric domains. J. Funct. Anal. 137 (1996), 97-151. DOI 10.1006/jfan.1996.0042 | MR 1383014 | Zbl 0880.47015
[2] J. Arazy, S. D. Fisher, J. Peetre: Hankel operators on weighted Bergman spaces. Am. J. Math. 110 (1988), 989-1053. DOI 10.2307/2374685 | MR 0970119 | Zbl 0669.47017
[3] M. Çelik, Y. E. Zeytuncu: Hilbert-Schmidt Hankel operators with anti-holomorphic symbols on complex ellipsoids. Integral Equations Oper. Theory 76 (2013), 589-599. DOI 10.1007/s00020-013-2070-4 | MR 3073947 | Zbl 1288.47028
[4] P. Harrington, A. Raich: Defining functions for unbounded $C^m$ domains. Rev. Mat. Iberoam. 29 (2013), 1405-1420. DOI 10.4171/RMI/762 | MR 3148609 | Zbl 1288.26008
[5] P. S. Harrington, A. Raich: Sobolev spaces and elliptic theory on unbounded domains in $\mathbb R^n$. Adv. Diff. Equ. 19 (2014), 635-692. MR 3252898 | Zbl 1301.46015
[6] S. G. Krantz, S.-Y. Li, R. Rochberg: The effect of boundary geometry on Hankel operators belonging to the trace ideals of Bergman spaces. Integral Equations Oper. Theory 28 (1997), 196-213. DOI 10.1007/BF01191818 | MR 1451501 | Zbl 0903.47019
[7] T. Le: Hilbert-Schmidt Hankel operators over complete Reinhardt domains. Integral Equations Oper. Theory 78 (2014), 515-522. DOI 10.1007/s00020-013-2103-z | MR 3180876 | Zbl 1318.47047
[8] H. Li: Schatten class Hankel operators on the Bergman spaces of strongly pseudoconvex domains. Proc. Am. Math. Soc. 119 (1993), 1211-1221. DOI 10.2307/2159984 | MR 1169879 | Zbl 0802.47022
[9] M. M. Peloso: Hankel operators on weighted Bergman spaces on strongly pseudoconvex domains. Ill. J. Math. 38 (1994), 223-249. MR 1260841 | Zbl 0812.47023
[10] J. R. Retherford: Hilbert space: Compact operators and the trace theorem. London Mathematical Society Student Texts 27, Cambridge University Press, Cambridge (1993). MR 1237405 | Zbl 0783.47031
[11] G. Schneider: A different proof for the non-existence of Hilbert-Schmidt Hankel operators with anti-holomorphic symbols on the Bergman space. Aust. J. Math. Anal. Appl. (electronic only) 4 (2007), Artical No. 1, pages 7. MR 2326997 | Zbl 1220.47040
[12] J. J. O. O. Wiegerinck: Domains with finite-dimensional Bergman space. Math. Z. 187 (1984), 559-562. DOI 10.1007/BF01174190 | MR 0760055 | Zbl 0534.32001
[13] K. H. Zhu: Hilbert-Schmidt Hankel operators on the Bergman space. Proc. Am. Math. Soc. 109 (1990), 721-730. DOI 10.2307/2048212 | MR 1013987 | Zbl 0731.47028

Affiliations:   Mehmet Çelik, Texas A&M University-Commerce, Department of Mathematics, 1600 Education Dr., Binnion Hall Room 303A, Commerce, Texas, 75429-3011, USA, e-mail:; Yunus E. Zeytuncu, University of Michigan-Dearborn, Department of Mathematics and Statistics, 4901 Evergreen Road, 2014 CASL Building, Dearborn, Michigan, 48128, USA, e-mail:

Springer subscribers can access the papers on Springer website.
Access to full texts on this site is restricted to subscribers of Myris Trade. To activate your access, please send an e-mail to
[List of online first articles] [Contents of Czechoslovak Mathematical Journal] [Full text of the older issues of Czechoslovak Mathematical Journal at DML-CZ]

PDF available at: