Czechoslovak Mathematical Journal, Vol. 67, No. 2, pp. 417-425, 2017


Certain decompositions of matrices over Abelian rings

Nahid Ashrafi, Marjan Sheibani, Huanyin Chen

Received December 14, 2015.  First published March 1, 2017.

Abstract:  A ring $R$ is (weakly) nil clean provided that every element in $R$ is the sum of a (weak) idempotent and a nilpotent. We characterize nil and weakly nil matrix rings over abelian rings. Let $R$ be abelian, and let $n\in{\Bbb N}$. We prove that $M_n(R)$ is nil clean if and only if $R/J(R)$ is Boolean and $M_n(J(R))$ is nil. Furthermore, we prove that $R$ is weakly nil clean if and only if $R$ is periodic; $R/J(R)$ is ${\Bbb Z}_3$, $B$ or ${\Bbb Z}_3\oplus B$ where $B$ is a Boolean ring, and that $M_n(R)$ is weakly nil clean if and only if $M_n(R)$ is nil clean for all $n\geq2$.
Keywords:  idempotent element; nilpotent element; nil clean ring; weakly nil clean ring
Classification MSC:  16S34, 16U10, 16E50
DOI:  10.21136/CMJ.2017.0677-15


References:
[1] M.-S. Ahn, D. D. Anderson: Weakly clean rings and almost clean rings. Rocky Mt. J. Math. 36 (2006), 783-798. DOI 10.1216/rmjm/1181069429 | MR 2254362 | Zbl 1131.13301
[2] D. D. Anderson, V. P. Camillo: Commutative rings whose elements are a sum of a unit and idempotent. Commun. Algebra 30 (2002), 3327-3336. DOI 10.1081/AGB-120004490 | MR 1914999 | Zbl 1083.13501
[3] D. Andrica, G. Călugăreanu: A nil-clean $2\times 2$ matrix over the integers which is not clean. J. Algebra Appl. 13 (2014), Article ID 1450009, 9 pages. DOI 10.1142/S0219498814500091 | MR 3195166 | Zbl 1294.16019
[4] S. Breaz, G. Călugăreanu, P. Danchev, T. Micu: Nil-clean matrix rings. Linear Algebra Appl. 439 (2013), 3115-3119. DOI 10.1016/j.laa.2013.08.027 | MR 3116417 | Zbl 06259710
[5] S. Breaz, P. Danchev, Y. Zhou: Rings in which every element is either a sum or a difference of a nilpotent and an idempotent. J. Algebra Appl. 15 (2016), Article ID 1650148, 11 pages. DOI 10.1142/S0219498816501486 | MR 3528770 | Zbl 06619808
[6] W. D. Burgess, W. Stephenson: Rings all of whose Pierce stalks are local. Canad. Math. Bull. 22 (1979), 159-164. DOI 10.4153/CMB-1979-022-8 | MR 0537296 | Zbl 0411.16009
[7] M. Chacron: On a theorem of Herstein. Can. J. Math. 21 (1969), 1348-1353. DOI 10.4153/CJM-1969-148-5 | MR 0262295 | Zbl 0213.04302
[8] H. Chen: Rings Related to Stable Range Conditions. Series in Algebra 11, World Scientific, Hackensack (2011). MR 2752904 | Zbl 1245.16002
[9] P. V. Danchev, W. W. McGovern: Commutative weakly nil clean unital rings. J. Algebra Appl. 425 (2015), 410-422. DOI 10.1016/j.jalgebra.2014.12.003 | MR 3295991 | Zbl 1316.16028
[10] A. J. Diesl: Nil clean rings. J. Algebra 383 (2013), 197-211. DOI 10.1016/j.jalgebra.2013.02.020 | MR 3037975 | Zbl 1296.16016
[11] M. T. Koşan, T.-K. Lee, Y. Zhou: When is every matrix over a division ring a sum of an idempotent and a nilpotent?. Linear Algebra Appl. 450 (2014), 7-12. DOI 10.1016/j.laa.2014.02.047 | MR 3192466 | Zbl 1303.15016
[12] W. W. McGovern, S. Raja, A. Sharp: Commutative nil clean group rings. J. Algebra Appl. 14 (2015), Article ID 1550094, 5 pages. DOI 10.1142/S0219498815500942 | MR 3338090 | Zbl 1325.16024
[13] W. K. Nicholson: Lifting idempotents and exchange rings. Trans. Am. Math. Soc. 229 (1977), 269-278. DOI 10.2307/1998510 | MR 0439876 | Zbl 0352.16006
[14] H.-P. Yu: On quasi-duo rings. Glasg. Math. J. 37 (1995), 21-31. DOI 10.1017/S0017089500030342 | MR 1316960 | Zbl 0819.16001

Affiliations:   Nahid Ashrafi, Marjan Sheibani, Faculty of Mathematics, Statistics and Computer Science, Semnan University, P.O. Box: 35195-363, Semnan 35131-19111, Iran, e-mail: n.ashrafi@semnan.ac.ir, m.sheibani1@gmail.com; Huanyin Chen (corresponding author), Department of Mathematics, Hangzhou Normal University, 16 Xuelin St, Jianggan, Hangzhou, 410006, Zhejiang, China, e-mail: huanyinchen@aliyun.com

 
PDF available at: