Czechoslovak Mathematical Journal, Vol. 67, No. 2, pp. 439-455, 2017


Density of solutions to quadratic congruences

Neha Prabhu

Received December 31, 2015.  First published May 5, 2017.

Abstract:  A classical result in number theory is Dirichlet's theorem on the density of primes in an arithmetic progression. We prove a similar result for numbers with exactly $k$ prime factors for $k>1$. Building upon a proof by E. M. Wright in 1954, we compute the natural density of such numbers where each prime satisfies a congruence condition. As an application, we obtain the density of squarefree $n\leq x$ with $k$ prime factors such that a fixed quadratic equation has exactly $2^k$ solutions modulo $n$.
Keywords:  Dirichlet's theorem; asymptotic density; primes in arithmetic progression; squarefree number
Classification MSC:  11D45, 11B25, 11N37
DOI:  10.21136/CMJ.2017.0712-15


References:
[1] G. H. Hardy, E. M. Wright: An Introduction to the Theory of Numbers. Oxford University Press, Oxford (2008). MR 2445243 | Zbl 1159.11001
  [2] H. Kornblum, E. Landau: Über die Primfunktionen in einer arithmetischen Progression. Math. Zeitschr. 5 (1919), 100-111. (In German). DOI 10.1007/BF01203156 | MR 1544375 | Zbl 47.0154.02
  [3] E. Landau: Sur quelques problèmes relatifs à la distribution des nombres premiers. S. M. F. Bull. 28 (1900), 25-38. (In French). MR 1504359 | Zbl 31.0200.01
  [4] H. L. Montgomery, R. C. Vaughan: Multiplicative Number Theory. I. Classical Theory. Cambridge Studies in Advanced Mathematics 97, Cambridge University Press, Cambridge (2007). DOI 10.1017/CBO9780511618314 | MR 2378655 | Zbl 1142.11001
  [5] C. Pomerance: On the distribution of amicable numbers. J. Reine Angew. Math. 293/294 (1977), 217-222. DOI 10.1515/crll.1977.293-294.217 | MR 0447087 | Zbl 0349.10004
  [6] P. Ribenboim: The New Book of Prime Number Records. Springer, New York (1996). DOI 10.1007/978-1-4612-0759-7 | MR 1377060 | Zbl 0856.11001
  [7] E. M. Wright: A simple proof of a theorem of Landau. Proc. Edinb. Math. Soc., II. Ser. 9 (1954), 87-90. DOI 10.1017/S0013091500021349 | MR 0065579 | Zbl 0057.28601

Access to the full text of journal articles on this site is restricted to the subscribers of Myris Trade. To activate your access, please contact Myris Trade at myris@myris.cz.
Subscribers of Springer need to access the articles on their site, which is https://link.springer.com/journal/10587.

Affiliations:   Neha Prabhu, Indian Institute of Science Education and Research, Dr Homi Bhabha Rd, NCL Colony, Pashan, Pune, Maharashtra 411008, India, e-mail: neha.prabhu@students.iiserpune.ac.in

 
PDF available at: