Czechoslovak Mathematical Journal, first online, pp. 1-11


Zeros of a certain class of Gauss hypergeometric polynomials

Addisalem Abathun, Rikard Bøgvad

Received February 8, 2017.   First published February 2, 2018.

Abstract:  We prove that as $n\to\infty$, the zeros of the polynomial ${}_{2}{F}_{1}\left[ \matrix -n,\al n+1\\ \al n+2 \endmatrix ;z\right]$ cluster on (a part of) a level curve of an explicit harmonic function. This generalizes previous results of Boggs, Driver, Duren et al. (1999-2001) to the case of a complex parameter $\alpha$ and partially proves a conjecture made by the authors in an earlier work.
Keywords:  asymptotic zero-distribution; hypergeometric polynomial; saddle point method
Classification MSC:  33C05, 30C15
DOI:  10.21136/CMJ.2018.0055-17

PDF available at:  Institute of Mathematics CAS

References:
[1] A. Abathun, R. Bøgvad: Asymptotic distribution of zeros of a certain class of hypergeometric polynomials. Comput. Methods Funct. Theory 16 (2016), 167-185. DOI 10.1007/s40315-015-0131-1 | MR 3503349 | Zbl 1339.33009
[2] G. E. Andrews, R. Askey, R. Roy: Special Functions. Encyclopedia of Mathematics and Its Applications 71, Cambridge University Press, Cambridge (1999). DOI 10.1017/CBO9781107325937 | MR 1688958 | Zbl 0920.33001
[3] N. Bleistein: Mathematical Methods for Wave Phenomena. Computer Science and Applied Mathematics, Academic Press, Orlando (1984). DOI 10.1016/B978-0-08-091695-8.50001-7 | MR 0755514 | Zbl 0554.35002
[4] K. Boggs, P. Duren: Zeros of hypergeometric functions. Comput. Methods Funct. Theory 1 (2001), 275-287. DOI 10.1007/BF03320990 | MR 1931616 | Zbl 1009.33004
[5] J. Borcea, R. Bøgvad, B. Shapiro: Homogenized spectral problems for exactly solvable operators: asymptotics of polynomial eigenfunctions. Publ. Res. Inst. Math. Sci. 45 (2009), 525-568 corrigendum ibid. 48 (2012), 229-233. DOI 10.2977/prims/1241553129 | MR 2510511 | Zbl 1182.30008
[6] N. G. de Bruijn: Asymptotic Methods in Analysis. Bibliotheca Mathematica 4, North-Holland Publishing, Amsterdam (1961). MR 0177247 | Zbl 0109.03502
[7] K. Driver, P. Duren: Asymptotic zero distribution of hypergeometric polynomials. Numer. Algorithms 21 (1999), 147-156. DOI doi.org/10.1023/A:1019197027156 | MR 1725722 | Zbl 0935.33004
[8] P. L. Duren, B. J. Guillou: Asymptotic properties of zeros of hypergeometric polynomials. J. Approximation Theory 111 (2001), 329-343. DOI 10.1006/jath.2001.3580 | MR 1849553 | Zbl 0983.33008

Affiliations:   Addisalem Abathun, Department of Mathematics, Stockholm University, Universitetsvägen 10, 114 18 Stockholm, Sweden, and Department of Mathematics, Addis Ababa University, Ras Mekonnen Bldg., P. O. Box 1176, Addis Ababa, Ethiopia, e-mail: addisaa@math.su.se; Rikard Bøgvad, Department of Mathematics, Stockholm University, Universitetsvägen 10, 114 18 Stockholm, Sweden, e-mail: rikard@math.su.se


 
PDF available at: