Czechoslovak Mathematical Journal, first online, pp. 1-18


Automorphism group of representation ring of the weak Hopf algebra $\widetilde{H_8}$

Dong Su, Shilin Yang

Received March 22, 2017.   First published February 2, 2018.

Abstract:  Let $H_8$ be the unique noncommutative and noncocommutative eight dimensional semi-simple Hopf algebra. We first construct a weak Hopf algebra $\widetilde{H_8}$ based on $H_8$, then we investigate the structure of the representation ring of $\widetilde{H_8}$. Finally, we prove that the automorphism group of $r(\widetilde{H_8})$ is just isomorphic to $D_6$, where $D_6$ is the dihedral group with order 12.
Keywords:  automorphism group; representation ring; weak Hopf algebra
Classification MSC:  16W20, 19A22
DOI:  10.21136/CMJ.2018.0131-17

PDF available at:  Institute of Mathematics CAS

References:
[1] N. Aizawa, P. S. Isaac: Weak Hopf algebras corresponding to $U_q[sl_n]$. J. Math. Phys. 44 (2003), 5250-5267. DOI 10.1063/1.1616999 | MR 2014859 | Zbl 1063.16041
[2] R. C. Alperin: Homology of the group of automorphisms of $k[x, y]$. J. Pure Appl. Algebra 15 (1979), 109-115. DOI 10.1016/0022-4049(79)90027-6 | MR 0535179 | Zbl 0415.13006
[3] H.-X. Chen: The coalgebra automorphism group of Hopf algebra $k_q[x,x^{-1},y]$. J. Pure Appl. Algebra 217 (2013), 1870-1887. DOI 10.1016/j.jpaa.2013.01.013 | MR 3053522 | Zbl 1292.16021
[4] H. Chen, F. Van Oystaeyen, Y. Zhang: The Green rings of Taft algebras. Proc. Am. Math. Soc. 142 (2014), 765-775. DOI 10.1090/S0002-9939-2013-11823-X | MR 3148512 | Zbl 1309.16021
[5] D. Cheng: The structure of weak quantum groups corresponding to Sweedler algebra. JP J. Algebra Number Theory Appl. 16 (2010), 89-99. MR 2662950 | Zbl 1217.16028
[6] D. Cheng, F. Li: The structure of weak Hopf algebras corresponding to $U_q( sl_2)$. Commun. Algebra 37 (2009), 729-742. DOI 10.1080/00927870802243499 | MR 2503175 | Zbl 1166.16018
[7] W. Dicks: Automorphisms of the polynomial ring in two variables. Publ. Secc. Mat. Univ. Autòn. Barc. 27 (1983), 155-162. DOI 10.5565/publmat_27183_04 | MR 0763864 | Zbl 0593.13005
[8] V. Drensky, J.-T. Yu: Automorphisms of polynomial algebras and Dirichlet series. J. Algebra 321 (2009), 292-302. DOI 10.1016/j.jalgebra.2008.08.026 | MR 2469362 | Zbl 1157.13015
[9] J. Han, Y. Su: Automorphism groups of Witt algebras. Available at ArXiv 1502.0144v1
[10] T. Jia, R. Zhao, L. Li: Automorphism group of Green ring of Sweedler Hopf algebra. Front. Math. China 11 (2016), 921-932. DOI 10.1007/s11464-016-0565-4 | MR 3531037 | Zbl 1372.16038
[11] F. Li: Weak Hopf algebras and some new solutions of the quantum Yang-Baxter equation. J. Algebra 208 (1998), 72-100. DOI 10.1006/jabr.1998.7491 | MR 1643979 | Zbl 0916.16020
[12] L. Li, Y. Zhang: The Green rings of the generalized Taft Hopf algebras. Hopf Algebras and Tensor Categories Contemporary Mathematics 585, Proc. of the International Conf., University of Almerí­a, Almerí­a (N. Andruskiewitsch et al.), Amer. Math. Soc., Providence (2013), 275-288. DOI 10.1090/conm/585/11618 | MR 3077243 | Zbl 1309.19001
[13] A. Masuoka: Semisimple Hopf algebras of dimension $6,8$. Isr. J. Math. 92 (1995), 361-373. DOI 10.1007/BF02762089 | MR 1357764 | Zbl 0839.16036
[14] S. Montgomery: Hopf Algebras and Their Actions on Rings. Conference on Hopf algebras and Their Actions on Rings, Chicago, 1992, CBMS Regional Conference Series in Mathematics 82, AMS, Providence (1993). DOI 10.1090/cbms/082 | MR 1243637 | Zbl 0793.16029
[15] D. Ştefan: Hopf algebras of low dimension. J. Algebra 211 (1999), 343-361. DOI 10.1006/jabr.1998.7602 | MR 1656583 | Zbl 0918.16031
[16] M. E. Sweedler: Hopf Algebras. Mathematics Lecture Note Series, W. A. Benjamin, New York (1969). MR 0252485 | Zbl 0194.32901
[17] W. van der Kulk: On polynomial rings in two variables. Nieuw Arch. Wiskd., III. Ser. 1 (1953), 33-41. MR 0054574 | Zbl 0050.26002
[18] S. Yang: Representations of simple pointed Hopf algebras. J. Algebra Appl. 3 (2004), 91-104. DOI 10.1142/S021949880400071X | MR 2047638 | Zbl 1080.16043
[19] S. Yang: Weak Hopf algebras corresponding to Cartan matrices. J. Math. Phys. 46 (2005), 073502, 18 pages. DOI 10.1063/1.1933063 | MR 2153558 | Zbl 1110.16047
[20] J.-T. Yu: Recognizing automorphisms of polynomial algebras. Mat. Contemp. 14 (1998), 215-225. MR 1663646 | Zbl 0930.13016
[21] K. Zhao: Automophisms of the binary polynomial algebras on integer rings. Chinese Ann. Math. Ser. A 4 (1995), 448-494. (In Chinese).

Affiliations:   Dong Su, Shilin Yang (corresponding author), College of Applied Sciences, Beijing University of Technology, 100 Ping Le Yuan, Beijing 100124, Chaoyang, P. R. China, e-mail: ynsudong@emails.bujt.edu.cn, slyang@bjut.edu.cn


 
PDF available at: