Czechoslovak Mathematical Journal, first online, pp. 1-8


Group algebras whose groups of normalized units have exponent 4

Victor Bovdi, Mohammed Salim

Received July 20, 2016.   First published January 16, 2018.

Abstract:  We give a full description of locally finite $2$-groups $G$ such that the normalized group of units of the group algebra $FG$ over a field $F$ of characteristic $2$ has exponent $4$.
Keywords:  group of exponent 4; unit group; modular group algebra
Classification MSC:  16S34, 16U60
DOI:  10.21136/CMJ.2018.0386-16

PDF available at:  Springer   Institute of Mathematics CAS

References:
[1] A. A. Bovdi: Group Rings. University publishers, Uzgorod (1974). (In Russian.) MR 0412282 | Zbl 0339.16004
[2] A. Bovdi: The group of units of a group algebra of characteristic $p$. Publ. Math. 52 (1998), 193-244. MR 1603359 | Zbl 0906.16016
[3] V. Bovdi: Group algebras whose group of units is powerful. J. Aust. Math. Soc. 87 (2009), 325-328. DOI 10.1017/S1446788709000214 | MR 2576568 | Zbl 1194.20005
[4] V. Bovdi, M. Dokuchaev: Group algebras whose involutory units commute. Algebra Colloq. 9 (2002), 49-64. MR 1883427 | Zbl 1002.20003
[5] V. Bovdi, A. Konovalov, R. Rossmanith, C. Schneider: LAGUNA Lie AlGebras and UNits of group Algebras. Version 3.5.0, 2009, http://www.cs.st-andrews.ac.uk/~alexk/laguna/.
[6] A. Bovdi, P. Lakatos: On the exponent of the group of normalized units of modular group algebras. Publ. Math. 42 (1993), 409-415. MR 1229688 | Zbl 0802.16027
[7] A. Caranti: Finite $p$-groups of exponent $p^2$ in which each element commutes with its endomorphic images. J. Algebra 97 (1985), 1-13. DOI 10.1016/0021-8693(85)90068-7 | MR 0812164 | Zbl 0572.20008
[8] GAP: The GAP Group. GAP - Groups, Algorithms, and Programming, Version 4.4.12, http://www.gap-system.org.
[9] N. D. Gupta, M. F. Newman: The nilpotency class of finitely generated groups of exponent four. Proc. 2nd Int. Conf. Theory of Groups, Canberra, 1973, Lect. Notes Math. 372, Springer, Berlin (1974), 330-332. DOI 10.1007/bfb0065183 | MR 0352265 | Zbl 0291.20034
[10] M. Hall, Jr.: The Theory of Groups. The Macmillan Company, New York (1959). MR 0103215 | Zbl 0084.02202
[11] Z. Janko: On finite nonabelian 2-groups all of whose minimal nonabelian subgroups are of exponent 4. J. Algebra 315 (2007), 801-808. DOI 10.1016/j.jalgebra.2007.02.010 | MR 2351894 | Zbl 1127.20018
[12] Z. Janko: Finite nonabelian 2-groups all of whose minimal nonabelian subgroups are metacyclic and have exponent 4. J. Algebra 321 (2009), 2890-2897. DOI 10.1016/j.jalgebra.2009.03.004 | MR 2512633 | Zbl 1177.20031
[13] Z. Janko: Finite $p$-groups of exponent $p^e$ all of whose cyclic subgroups of order $p^e$ are normal. J. Algebra 416 (2014), 274-286. DOI 10.1016/j.jalgebra.2014.05.027 | MR 3232801 | Zbl 1323.20016
[14] M. Quick: Varieties of groups of exponent 4. J. Lond. Math. Soc., II. Ser. 60 (1999), 747-756. DOI 10.1112/S0024610799008169 | MR 1753811 | Zbl 0955.20014
[15] A. Shalev: Dimension subgroups, nilpotency indices, and the number of generators of ideals in $p$-group algebras. J. Algebra 129 (1990), 412-438. DOI 10.1016/0021-8693(90)90228-G | MR 1040946 | Zbl 0695.16007
[16] A. Shalev: Lie dimension subgroups, Lie nilpotency indices, and the exponent of the group of normalized units. J. Lond. Math. Soc., II. Ser. 43 (1991), 23-36. DOI 10.1112/jlms/s2-43.1.23 | MR 1099083 | Zbl 0669.16005
[17] M. R. Vaughan-Lee, J. Wiegold: Countable locally nilpotent groups of finite exponent without maximal subgroups. Bull. Lond. Math. Soc. 13 (1981), 45-46. DOI 10.1112/blms/13.1.45 | MR 0599640 | Zbl 0418.20027

Affiliations:   Victor Bovdi, Mohammed Salim, Department of Mathematical Sciences, United Arab Emirates University, P. O. Box 1551, Al Ain, United Arab Emirates, e-mail: vbovdi@gmail.com, msalim@uaeu.ac.ae


 
PDF available at: