Czechoslovak Mathematical Journal, first online, pp. 1-16


On weak supercyclicity II

Carlos S. Kubrusly, Bhagwati P. Duggal

Received August 28, 2016.   First published February 2, 2018.

Abstract:  This paper considers weak supercyclicity for bounded linear operators on a normed space. On the one hand, weak supercyclicity is investigated for classes of Hilbert-space operators: (i) self-adjoint operators are not weakly supercyclic, (ii) diagonalizable operators are not weakly $l$-sequentially supercyclic, and (iii) weak $l$-sequential supercyclicity is preserved between a unitary operator and its adjoint. On the other hand, weak supercyclicity is investigated for classes of normed-space operators: (iv) the point spectrum of the normed-space adjoint of a power bounded supercyclic operator is either empty or is a singleton in the open unit disk, (v) weak $l$-sequential supercyclicity coincides with supercyclicity for compact operators, and (vi) every compact weakly $l$-sequentially supercyclic operator is quasinilpotent.
Keywords:  supercyclic operator; weakly supercyclic operator; weakly $l$-sequentially supercyclic operator
Classification MSC:  47A16, 47B15
DOI:  10.21136/CMJ.2018.0457-16

PDF available at:  Institute of Mathematics CAS

References:
[1] Y. A. Abramovich, C. D. Aliprantis: An Invitation to Operator Theory. Graduate Studies in Mathematics 50, American Mathematical Society, Providence (2002). DOI 10.1090/gsm/050 | MR 1921782 | Zbl 1022.47001
[2] S. I. Ansari: Existence of hypercyclic operators on topological vector spaces. J. Funct. Anal. 148 (1997), 384-390. DOI 10.1006/jfan.1996.3093 | MR 1469346 | Zbl 0898.47019
[3] S. I. Ansari, P. S. Bourdon: Some properties of cyclic operators. Acta Sci. Math. 63 (1997), 195-207. MR 1459787 | Zbl 0892.47004
[4] F. Bayart, E. Matheron: Hyponormal operators, weighted shifts and weak forms of supercyclicity. Proc. Edinb. Math. Soc., II. Ser. 49 (2006), 1-15. DOI 10.1017/S0013091504000975 | MR 2202138 | Zbl 1103.47006
[5] F. Bayart, É. Matheron: Dynamics of Linear Operators. Cambridge Tracts in Mathematics 179, Cambridge University Press, Cambridge (2009). DOI 10.1017/CBO9780511581113 | MR 2533318 | Zbl 1187.47001
[6] J. Bès, K. C. Chan, R. Sanders: Every weakly sequentially hypercyclic shift is norm hypercyclic. Math. Proc. R. Ir. Acad. 105A (2005), 79-85. DOI 10.3318/PRIA.2005.105.2.79 | MR 2182152 | Zbl 1113.47005
[7] J. Bonet, L. Frerick, A. Peris, J. Wengenroth: Transitive and hypercyclic operators on locally convex spaces. Bull. Lond. Math. Soc. 37 (2005), 254-264. DOI 10.1112/S0024609304003698 | MR 2119025 | Zbl 1150.47005
[8] J. Bonet, A. Peris: Hypercyclic operators on non-normable Fréchet spaces. J. Funct. Anal. 159 (1998), 587-595. DOI 10.1006/jfan.1998.3315 | MR 1658096 | Zbl 0926.47011
[9] P. S. Bourdon: Orbits of hyponormal operators. Mich. Math. J. 44 (1997), 345-353. DOI 10.1307/mmj/1029005709 | MR 1460419 | Zbl 0896.47020
[10] J. B. Conway: A Course in Functional Analysis. Graduate Texts in Mathematics 96, Springer, New York (1990). MR 1070713 | Zbl 0706.46003
[11] S. J. Dilworth, V. G. Troitsky: Spectrum of a weakly hypercyclic operator meets the unit circle. Trends in Banach Spaces and Operator Theory A Conf. on Trends in Banach Spaces and Operator Theory, Memphis, 2001, Contemp. Math. 321, American Mathematical Society, Providence (2003), 67-69. DOI 10.1090/conm/321/05634 | MR 1978807 | Zbl 1052.47003
[12] B. P. Duggal: Weak supercyclicity: dynamics of paranormal operators. Rend. Circ. Mat. Palermo (2) 65 (2016), 297-306. DOI 10.1007/s12215-016-0234-1 | MR 3535456 | Zbl 1356.47027
[13] B. P. Duggal, C. S. Kubrusly, I. H. Kim: Bishop's property $(\beta)$, a commutativity theorem and the dynamics of class $\Cal A(s,t)$ operators. J. Math. Anal. Appl. 427 (2015), 107-113. DOI 10.1016/j.jmaa.2015.02.040 | MR 3318189 | Zbl 1330.47029
[14] E. A. Gallardo-Gutiérrez, A. Montes-Rodríguez: The Volterra operator is not supercyclic. Integral Equations Oper. Theory 50 (2004), 211-216. DOI 10.1007/s00020-003-1227-y | MR 2099790 | Zbl 1080.47011
[15] K.-G. Grosse-Erdmann, A. Peris Manguillot: Linear Chaos. Universitext, Springer, London (2011). DOI 10.1007/978-1-4471-2170-1 | MR 2919812 | Zbl 1246.47004
[16] P. R. Halmos: A Hilbert Space Problem Book. Graduate Texts in Mathematics 19, Springer, New York (1982). DOI 10.1007/978-1-4684-9330-6 | MR 0675952 | Zbl 0496.47001
[17] D. A. Herrero: Limits of hypercyclic and supercyclic operators. J. Funct. Anal. 99 (1991), 179-190. DOI 10.1016/0022-1236(91)90058-D | MR 1120920 | Zbl 0758.47016
[18] G. Herzog: On linear operators having supercyclic vectors. Stud. Math. 103 (1992), 295-298. DOI 10.4064/sm-103-3-295-298 | MR 1202014 | Zbl 0811.47018
[19] H. M. Hilden, L. J. Wallen: Some cyclic and non-cyclic vectors of certain operators. Indiana Univ. Math. J. 23 (1974), 557-565. DOI 10.1512/iumj.1974.23.23046 | MR 0326452 | Zbl 0274.47004
[20] C. S. Kubrusly: The Elements of Operator Theory. Birkhäuser, New York (2011). DOI 10.1007/978-0-8176-4998-2 | MR 2778685 | Zbl 1231.47001
[21] C. S. Kubrusly: Spectral Theory of Operators on Hilbert Spaces. Birkhäuser, New York (2012). DOI 10.1007/978-0-8176-8328-3 | MR 2951608 | Zbl 1256.47001
[22] C. S. Kubrusly: Singular-continuous unitaries and weak dynamics. Math. Proc. R. Ir. Acad. 116A (2016), 45-56. DOI 10.3318/PRIA.2016.116.04 | MR 3653822 | Zbl 06629394
[23] C. S. Kubrusly, B. P. Duggal: On weak supercyclicity I. Avaible at https://arxiv.org/abs/1801.08091.
[24] R. E. Megginson: An Introduction to Banach Space Theory. Graduate Texts in Mathematics 183, Springer, New York (1998). DOI 10.1007/978-1-4612-0603-3 | MR 1650235 | Zbl 0910.46008
[25] A. Montes-Rodríguez, S. A. Shkarin: Non-weakly supercyclic operators. J. Oper. Theory 58 (2007), 39-62. MR 2336044 | Zbl 1138.47300
[26] A. Peris: Multi-hypercyclic operators are hypercyclic. Math. Z. 236 (2001), 779-786. DOI 10.1007/PL00004850 | MR 1827503 | Zbl 0994.47011
[27] H. N. Salas: Supercyclicity and weighted shifts. Stud. Math. 135 (1999), 55-74. DOI 10.4064/sm-135-1-55-74 | MR 1686371 | Zbl 0940.47005
[28] R. Sanders: Weakly supercyclic operators. J. Math. Anal. Appl. 292 (2004), 148-159. DOI 10.1016/j.jmaa.2003.11.049 | MR 2050222 | Zbl 1073.47013
[29] M. Schechter: Principles of Functional Analysis. Graduate Studies in Mathematics 36, American Mathematical Society, Providence (2002). DOI 10.1090/gsm/036 | MR 1861991 | Zbl 1002.46002
[30] S. Shkarin: Non-sequential weak supercyclicity and hypercyclicity. J. Funct. Anal. 242 (2007), 37-77. DOI 10.1016/j.jfa.2006.04.021 | MR 2274015 | Zbl 1114.47007

Affiliations:   Carlos S. Kubrusly, Department of Applied Mathematics, Mathematics Institute, Federal University of Rio de Janeiro, Av. Pedro Calmon, 550 - Cidade Universitária, Rio de Janeiro, 21941-909, Brazil, e-mail: carloskubrusly@gmail.com; Bhagwati P. Duggal, 8 Redwood Grove, Northfield Avenue, Ealing, London W5 4SZ, United Kingdom, e-mail: bpduggal@yahoo.co.uk


 
PDF available at: