Czechoslovak Mathematical Journal, first online, pp. 1-6


Every $2$-group with all subgroups normal-by-finite is locally finite

Enrico Jabara

Received September 30, 2016.   First published February 14, 2018.

Abstract:  A group $G$ has all of its subgroups normal-by-finite if $H/H_G$ is finite for all subgroups $H$ of $G$. The Tarski-groups provide examples of $p$-groups ($p$ a "large" prime) of nonlocally finite groups in which every subgroup is normal-by-finite. The aim of this paper is to prove that a $2$-group with every subgroup normal-by-finite is locally finite. We also prove that if $| H/H_G | \leq2$ for every subgroup $H$ of $G$, then $G$ contains an Abelian subgroup of index at most $8$.
Keywords:  $2$-group; locally finite group; normal-by-finite subgroup; core-finite group
Classification MSC:  20F50, 20F14, 20D15
DOI:  10.21136/CMJ.2018.0504-16

PDF available at:  Institute of Mathematics CAS

References:
[1] J. T. Buckley, J. C. Lennox, B. H. Neumann, H. Smith, J. Wiegold: Groups with all subgroups normal-by-finite. J. Aust. Math. Soc., Ser. A 59 (1995), 384-398. MR 1355229 | Zbl 0853.20023
[2] G. Cutolo, E. I. Khukhro, J. C. Lennox, S. Rinauro, H. Smith, J. Wiegold: Locally finite groups all of whose subgroups are boundedly finite over their cores. Bull. Lond. Math. Soc. 29 (1997), 563-570. DOI 10.1112/S0024609397003068 | MR 1458716 | Zbl 0904.20030
[3] O. H. Kegel, B. A. F. Wehrfritz: Locally Finite Groups. North-Holland Mathematical Library 3, North-Holland Publishing, Amsterdam (1973). MR 0470081 | Zbl 0259.20001
[4] J. C. Lennox, A. Mohammadi Hassanabadi, A. G. R. Stewart, J. Wiegold: Nilpotent extensibility and centralizers in infinite 2-groups. Proceedings of the Second International Group Theory Conference (Bressanone, 1989) Rend. Circ. Mat. Palermo (2) Suppl. No. 23 (1990), 209-219. MR 1068362 | Zbl 0705.20033
[5] A. Yu. Ol'shanskiń≠: Geometry of Defining Relations in Groups. Mathematics and Its Applications. Soviet Series 70, Kluwer Academic Publishers, Dordrecht (1991). DOI 10.1007/978-94-011-3618-1 | MR 1191619 | Zbl 0732.20019
[6] D. J. S. Robinson: A Course in the Theory of Groups. Graduate Texts in Mathematics 80, Springer, New York (1996). DOI 10.1007/978-1-4419-8594-1 | MR 1357169 | Zbl 0836.20001
[7] B. Wilkens: More on core-2 2-groups. J. Group Theory 20 (2017), 193-225. DOI 10.1515/jgth-2016-0035 | MR 3619126 | Zbl 1370.20017

Affiliations:   Enrico Jabara, DFBC - Universit√† di Venezia, Dorsoduro 3484/D - 30123 Venezia, Italy, e-mail: jabara@unive.it


 
PDF available at: