Czechoslovak Mathematical Journal, Vol. 70, No. 1, pp. 33-66, 2020


Hyperbolic inverse mean curvature flow

Jing Mao, Chuan-Xi Wu, Zhe Zhou

Received April 3, 2018.   Published online September 19, 2019.

Abstract:  We prove the short-time existence of the hyperbolic inverse (mean) curvature flow (with or without the specified forcing term) under the assumption that the initial compact smooth hypersurface of $\mathbb{R}^{n+1}$ ($n\ge2$) is mean convex and star-shaped. Several interesting examples and some hyperbolic evolution equations for geometric quantities of the evolving hypersurfaces are shown. Besides, under different assumptions for the initial velocity, we can get the expansion and the convergence results of a hyperbolic inverse mean curvature flow in the plane $\mathbb{R}^2$, whose evolving curves move normally.
Keywords:  evolution equation; hyperbolic inverse mean curvature flow; short time existence
Classification MSC:  58J45; 58J47


References:
[1] H. Bray: Proof of the Riemannian Penrose inequality using the positive mass theorem. J. Differ. Geom. 59 (2001), 177-267. DOI 10.4310/jdg/1090349428 | MR 1908823 | Zbl 1039.53034
[2] S. Brendle, P.-K. Hung, M.-T. Wang: A Minkowski inequality for hypersurfaces in the anti-de Sitter-Schwarzschild manifold. Commun. Pure Appl. Math. 69 (2016), 124-144. DOI 10.1002/cpa.21556 | MR 3433631 | Zbl 1331.53078
[3] L. Caffarelli, L. Nirenberg, J. Spruck: The Dirichlet problem for nonlinear second order elliptic equations. III: Functions of the eigenvalue of the Hessian. Acta Math. 155 (1985), 261-301. DOI 10.1007/BF02392544 | MR 0806416 | Zbl 0654.35031
[4] F. Cao: Geometric Curve Evolution and Image Processing. Lecture Notes in Mathematics 1805, Springer, Berlin (2003). DOI 10.1007/b10404 | MR 1976551 | Zbl 1290.35001
[5] L. Chen, J. Mao: Non-parametric inverse curvature flows in the AdS-Schwarzschild manifold. J. Geom. Anal. 28 (2018), 921-949. DOI 10.1007/s12220-017-9848-6 | MR 3790487 | Zbl 1393.53056
[6] L. Chen, J. Mao, N. Xiang, C. Xu,: Inverse mean curvature flow inside a cone in warped products. Available at https://arxiv.org/abs/1705.04865 (2017), 12 pages.
[7] L.-C. Evans: Partial Differential Equations. Graduate Studies in Mathematics 19, American Mathematical Society, Providence (1998). MR 1625845 | Zbl 0902.35002
[8] C. Gerhardt: Flow of nonconvex hypersurfaces into spheres. J. Differential Geom. 32 (1990), 299-314. DOI 10.4310/jdg/1214445048 | MR 1064876 | Zbl 0708.53045
[9] C.-L. He, D.-X. Kong, K.-F. Liu: Hyperbolic mean curvature flow. J. Differ. Equations 246 (2009), 373-390. DOI 10.1016/j.jde.2008.06.026 | MR 2467029 | Zbl 1159.53024
[10] L. Hörmander: Lectures on Nonlinear Hyperbolic Differential Equations. Mathématiques & Applications 26, Springer, Berlin (1997). MR 1466700 | Zbl 0881.35001
[11] G. Huisken: Flow by mean curvature of convex surfaces into spheres. J. Differ. Geom. 20 (1984), 237-266. DOI 10.4310/jdg/1214438998 | MR 0772132 | Zbl 0556.53001
[12] G. Huisken, T. Ilmanen: The inverse mean curvature flow and the Riemannian Penrose inequality. J. Differ. Geom. 59 (2001), 353-437. DOI 10.4310/jdg/1090349447 | MR 1916951 | Zbl 1055.53052
[13] D.-X. Kong, K.-F. Liu, Z.-G. Wang: Hyperbolic mean curvature flow: evolution of plane curves. Acta Math. Sci., Ser B 29 (2009), 493-514. DOI 10.1016/S0252-9602(09)60049-7 | MR 2514356 | Zbl 1212.58018
[14] J. Mao: Forced hyperbolic mean curvature flow. Kodai Math. J. 35 (2012), 500-522. DOI 10.2996/kmj/1352985451 | MR 2997477 | Zbl 1277.58012
[15] T. Marquardt: Inverse mean curvature flow for star-shaped hypersurfaces evolving in a cone. J. Geom. Anal. 23 (2013), 1303-1313. DOI 10.1007/s12220-011-9288-7 | MR 3078355 | Zbl 1317.53087
[16] G. Pipoli: Inverse mean curvature flow in quaternionic hyperbolic space. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 29 (2018), 153-171. DOI 10.4171/RLM/798 | MR 3787725 | Zbl 1391.53079
[17] G. Pipoli: Inverse mean curvature flow in complex hyperbolic space. Available at https://arxiv.org/abs/1610.01886 (2017), 31 pages.
[18] M.-H. Protter, H.-F. Weinberger: Maximum Principles in Differential Equations. Springer, New York (1984). MR 0762825 | Zbl 0549.35002
[19] J. Scheuer: The inverse mean curvature flow in warped cylinders of non-positive radial curvature. Adv. Math. 306 (2017), 1130-1163. DOI 10.1016/j.aim.2016.11.003 | MR 3581327 | Zbl 1357.53080
[20] R. Schneider: Convex Bodies: The Brum-Minkowski Theory. Encyclopedia of Mathematics and Its Applications 44, Cambridge University Press, Cambridge (1993). DOI 10.1017/CBO9780511526282 | MR 1216521 | Zbl 0798.52001
[21] P. Topping: Mean curvature flow and geometric inequalities. J. Reine Angew. Math. 503 (1998), 47-61. DOI 10.1515/crll.1998.099 | MR 1650335 | Zbl 0909.53044
[22] S.-T. Yau: Review of geometry and analysis. Asian J. Math. 4 (2000), 235-278. DOI 10.4310/AJM.2000.v4.n1.a16 | MR 1803723 | Zbl 1031.53004
[23] H.-Y. Zhou: Inverse mean curvature flows in warped product manifolds. J. Geom. Anal. 28 (2018), 1749-1772. DOI 10.1007/s12220-017-9887-z | MR 3790519 | Zbl 1393.53069
[24] X.-P. Zhu: Lectures on Mean Curvature Flows. AMS/IP Studies in Advanced Mathematics 32, American Mathematical Society, Providence (2002). DOI 10.1090/amsip/032 | MR 1931534 | Zbl 1197.53087

Affiliations:   Jing Mao (corresponding author), Chuan-Xi Wu, Zhe Zhou, Faculty of Mathematics and Statistics, Key Laboratory of Applied Mathematics of Hubei Province, Hubei University, Wuhan, 430062, P. R. China, e-mail: jiner120@163.com, jiner120@tom.com


 
PDF available at: