Czechoslovak Mathematical Journal, first online, pp. 1-18


The topology of the space of $\mathcal{HK}$ integrable functions in ${\mathbb R}^n$

Varayu Boonpogkrong

Received July 24, 2022.   Published online May 22, 2023.

Abstract:  It is known that there is no natural Banach norm on the space $\mathcal{HK}$ of $n$-dimensional Henstock-Kurzweil integrable functions on $[a,b]$. We show that the $\mathcal{HK}$ space is the uncountable union of Fréchet spaces $\mathcal{HK}(X)$. On each $\mathcal{HK}(X)$ space, an $F$-norm $\|{\cdot}\|^X$ is defined. A $\|{\cdot}\|^X$-convergent sequence is equivalent to a control-convergent sequence. Furthermore, an $F$-norm is also defined for a $\|{\cdot}\|^X$-continuous linear operator. Hence, many important results in functional analysis hold for the $\mathcal{HK}(X)$ space. It is well-known that every control-convergent sequence in the $\mathcal{HK}$ space always belongs to a $\mathcal{HK}(X)$ space. Hence, results in functional analysis can be applied to the $\mathcal{HK}$ space. Compact linear operators and the existence of solutions to integral equations are also given. The results for the one-dimensional case have been discussed in V. Boonpogkrong (2022). Proofs of many results for the $n$-dimensional and the one-dimensional cases are similar.
Keywords:  compact operator; integral equation; controlled convergence; Henstock-Kurzweil integral in $\R^n$
Classification MSC:  26A39, 26A42

PDF available at:  Springer   Institute of Mathematics CAS

References:
[1] D. D. Ang, K. Schmitt, L. K. Vy: A multidimensional analogue of the Denjoy-Perron- Henstock-Kurzweil integral. Bull. Belg. Math. Soc. - Simon Stevin 4 (1997), 355-371. DOI 10.36045/bbms/1105733252 | MR 1457075 | Zbl 0929.26009
[2] V. Boonpogkrong: Compact operators and integral equation in the $\Cal{HK}$ space. Czech. Math. J. 72 (2022), 239-257. DOI 10.21136/CMJ.2021.0447-20 | MR 4389117 | Zbl 07511564
[3] T. S. Chew, P. Y. Lee: The topology of the space of Denjoy integrable functions. Bull. Aust. Math. Soc. 42 (1990), 517-524. DOI 10.1017/S0004972700028689 | MR 1083288 | Zbl 0715.26004
[4] G. Köthe: Topological Vector Spaces. I. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 159. Springer, Berlin (1969). DOI 10.1007/978-3-642-64988-2 | MR 0248498 | Zbl 0179.17001
[5] P.-Y. Lee: Lanzhou Lectures on Henstock Integration. Series in Real Analysis 2. World Scientific, London (1989). DOI 10.1142/0845 | MR 1050957 | Zbl 0699.26004
[6] P. Y. Lee: Multiple integral, Chapter 7. Available at https://www.researchgate.net/publication/370871440_Lanzhou_Lectures_on_Henstock_Integration_Chapter_7_Multiple_integrals.
[7] T. Y. Lee: Henstock-Kurzweil Integration on Euclidean Spaces. Series in Real Analysis 12. World Scientific, Hackensack (2011). DOI 10.1142/7933 | MR 2789724 | Zbl 1246.26002
[8] S. A. Morris, E. S. Noussair: The Schauder-Tychonoff fixed point theorem and applications. Mat. Čas., Slovensk. Akad. Vied 25 (1975), 165-172. MR 0397486 | Zbl 0304.47049
[9] H. L. Royden: Real Analysis. Macmillan, New York (1988). MR 1013117 | Zbl 0704.26006
[10] C. Swartz: A gliding hump property for the Henstock-Kurzweil integral. Southeast Asian Bull. Math. 22 (1998), 437-443. MR 1811186 | Zbl 0935.28004
[11] E. Talvila: The distributional Denjoy integral. Real Anal. Exch. 33 (2008), 51-82. DOI 10.14321/realanalexch.33.1.0051 | MR 2402863 | Zbl 1154.26011
[12] B. S. Thomson: The space of Denjoy-Perron integrable functions. Real Anal. Exch. 25 (2000), 711-726. MR 1778525 | Zbl 1016.26010

Affiliations:   Varayu Boonpogkrong, Department of Mathematics, Division of Computational Science, Faculty of Science, Prince of Songkla University, 15 Kanjanavanich Road, Hat Yai, Songkhla 90110, Thailand, e-mail: varayu.b@psu.ac.th


 
PDF available at: