Czechoslovak Mathematical Journal, first online, pp. 1-21


Stieltjes differential problems with general boundary value conditions. Existence and bounds of solutions

Valeria Marraffa, Bianca Satco

Received March 21, 2023.   Published online March 22, 2024.

Abstract:  We are concerned with first order set-valued problems with very general boundary value conditions $\begin{cases} u'_g(t)\in F(t,u(t)),\quad\mu_g \text{-a.e.} t\in[0,T] , \\ L(u(0), u(T))=0 \end{cases}$ involving the Stieltjes derivative with respect to a left-continuous nondecreasing function $g\colon[0,T]\to\mathbb{R}$, a Carathéodory multifunction $F\colon[0,T]\times\mathbb{R}\to\mathcal{P}(\mathbb{R})$ and a continuous $L\colon\mathbb{R}^2\to\mathbb{R}$. Using appropriate notions of lower and upper solutions, we prove the existence of solutions via a fixed point result for condensing mappings. In the periodic single-valued case, combining an existence theory for the linear case with a recent result involving lower and upper solutions (which can be seen as a consequence of our existence theorem mentioned before), we get not only the existence of solutions, but also lower and upper bounds, respectively, by imposing an estimation for the right-hand side.
Keywords:  boundary value differential inclusion; Stieltjes derivative; Kurzweil-Stieltjes integral; periodic problem
Classification MSC:  34A06, 34B15, 26A24, 26A42, 47H10

PDF available at:  Springer   Institute of Mathematics CAS

References:
[1] J.-P. Aubin, H. Frankowska: Set-Valued Analysis. Systems and Control: Foundations and Applications 2. Birkhäuser, Boston (1990). MR 1048347 | Zbl 10.1007/978-0-8176-4848-0
[2] J. Banas, K. Goebel: Measures of Noncompactness in Banach Spaces. Lecture Notes in Pure and Applied Mathematics 60. Marcel Dekker, New York (1980). MR 0591679 | Zbl 0441.47056
[3] M. Benchohra, S. K. Ntouyas: The lower and upper solutions method for first order differential inclusions with nonlinear boundary conditions. JIPAM, J. Inequal. Pure Appl. Math. 3 (2002), Article ID 14, 8 pages. MR 1888929 | Zbl 1003.34013
[4] C. Castaing, M. Valadier: Convex Analysis and Measurable Multifunctions. Lecture Notes in Mathematics 580. Springer, Berlin (1977). DOI 10.1007/BFb0087685 | MR 0467310 | Zbl 0346.46038
[5] M. Cichoń, B. R. Satco: Measure differential inclusions - between continuous and discrete. Adv. Difference Equ. 2014 (2014), Article ID 56, 18 pages. DOI 10.1186/1687-1847-2014-56 | MR 3348625 | Zbl 1350.49014
[6] M. Cichoń, B. Satco, A. Sikorska-Nowak: Impulsive nonlocal differential equations through differential equations on time scales. Appl. Math. Comput. 218 (2011), 2449-2458. DOI 10.1016/j.amc.2011.07.057 | MR 2838154 | Zbl 1247.34138
[7] L. Di Piazza, V. Marraffa, B. Satco: Approximating the solutions of differential inclusions driven by measures. Ann. Mat. Pura Appl. (4) 198 (2019), 2123-2140. DOI 10.1007/s10231-019-00857-6 | MR 4031842 | Zbl 1440.34005
[8] L. Di Piazza, V. Marraffa, B. Satco: Measure differential inclusions: Existence results and minimum problems. Set-Valued Var. Anal. 29 (2021), 361-382. DOI 10.1007/s11228-020-00559-9 | MR 4272032 | Zbl 1479.34008
[9] G. Dimitriu, B. Satco: Urysohn measure driven integral equations in the space of bounded variation functions and applications. Application of Mathematics in Technical and Natural Sciences. AIP Conference Proceedings 1773. AIP, New York (2016), Article ID 050002. DOI 10.1063/1.4964972
[10] M. Federson, J. G. Mesquita, A. Slavík: Measure functional differential equations and functional dynamic equations on time scales. J. Diff. Equations 252 (2012), 3816-3847. DOI 10.1016/j.jde.2011.11.005 | MR 2875603 | Zbl 1239.34076
[11] M. Federson, J. G. Mesquita, A. Slavík: Basic results for functional differential and dynamic equations involving impulses. Math. Nachr. 286 (2013), 181-204. DOI 10.1002/mana.201200006 | MR 3021475 | Zbl 1266.34115
[12] D. Fraňková: Regulated functions. Math. Bohem. 116 (1991), 20-59. DOI 10.21136/MB.1991.126195 | MR 1100424 | Zbl 0724.26009
[13] M. Frigon, H. Gilbert: Systems of first order inclusions on time scales. Topol. Methods Nonlinear Anal. 37 (2011), 147-163. MR 2839521 | Zbl 1271.34092
[14] M. Frigon, R. López Pouso: Theory and applications of first-order systems of Stieltjes differential equations. Adv. Nonlinear Anal. 6 (2017), 13-36. DOI 10.1515/anona-2015-0158 | MR 3604936 | Zbl 1361.34010
[15] R. A. Gordon: The Integrals of Lebesgue, Denjoy, Perron, and Henstock. Graduate Studies in Mathematics 4. AMS, Providence (1994). DOI 10.1090/gsm/004 | MR 1288751 | Zbl 0807.26004
[16] N. Halidias, N. S. Papageorgiou: Second-order multivalued boundary value problems. Arch. Math., Brno 34 (1998), 267-284. MR 1645320 | Zbl 0915.34021
[17] J. Kurzweil: Generalized ordinary differential equations and continuous dependence on a parameter. Czech. Math. J. 7 (1957), 418-449. DOI 10.21136/CMJ.1957.100258 | MR 0111875 | Zbl 0090.30002
[18] J. Kurzweil: Nichtabsolut konvergente Integrale. Teubner-Texte zur Mathematik 26. B. G. Teubner, Leipzig (1980). (In German.) MR 0597703 | Zbl 0441.28001
[19] R. López Pouso, I. Márquez Albés: General existence principles for Stieltjes differential equations with applications to mathematical biology. J. Differ. Equations 264 (2018), 5388-5407. DOI 10.1016/j.jde.2018.01.006 | MR 3760178 | Zbl 1386.34021
[20] R. López Pouso, A. Rodríguez: A new unification of continuous, discrete and impulsive calculus through Stieltjes derivatives. Real Anal. Exch. 40 (2015), 319-353. DOI 10.14321/realanalexch.40.2.0319 | MR 3499768 | Zbl 1384.26024
[21] L. Maia, N. El Khattabi, M. Frigon: Existence and multiplicity results for first-order Stieltjes differential equations. Adv. Nonlinear Stud. 22 (2022), 684-710. DOI 10.1515/ans-2022-0038 | MR 4521244 | Zbl 1509.34005
[22] I. Márquez Albés: Notes on the linear equation with Stieltjes derivatives. Electron. J. Qual. Theory Differ. Equ. 2021 (2021), Article ID 42, 18 pages. DOI 10.14232/ejqtde.2021.1.42 | MR 4275332 | Zbl 1499.34099
[23] V. Marraffa, B. Satco: Stieltjes differential inclusions with periodic boundary conditions without upper semicontinuity. Mathematics 10 (2022), Article ID 55, 17 pages. DOI 10.3390/math10010055
[24] M. Martelli: A Rothe's type theorem for non-compact acyclic-valued maps. Boll. Unione Mat. Ital., IV. Ser. 11 (1975), 70-76. MR 0394752 | Zbl 0314.47035
[25] G. A. Monteiro, B. Satco: Distributional, differential and integral problems: Equivalence and existence results. Electron. J. Qual. Theory Differ. Equ. 2017 (2017), Article ID 7, 26 pages. DOI 10.14232/ejqtde.2017.1.7 | MR 3606985 | Zbl 1413.34062
[26] G. A. Monteiro, A. Slavík: Extremal solutions of measure differential equations. J. Math. Anal. Appl. 444 (2016), 568-597. DOI 10.1016/j.jmaa.2016.06.035 | MR 3523392 | Zbl 1356.34094
[27] G. A. Monteiro, A. Slavík, M. Tvrdý: Kurzweil-Stieltjes Integral: Theory and Its Applications. Series in Real Analysis 15. World Scientific, Hackensack (2019). DOI 10.1142/9432 | MR 3839599 | Zbl 1437.28001
[28] S. Saks: Theory of the Integral. Monografie Matematyczne 7. Instytut Matematyczny PAN, Warszawa (1937). MR 0167578 | JFM 63.0183.05
[29] B. Satco: A Komlós-type theorem for the set-valued Henstock-Kurzweil-Pettis integral and applications. Czech. Math. J. 56 (2006), 1029-1047. DOI 10.1007/s10587-006-0078-5 | MR 2261675 | Zbl 1164.28301
[30] B. Satco: Existence results for Urysohn integral inclusions involving the Henstock integral. J. Math. Anal. Appl. 336 (2007), 44-53. DOI 10.1016/j.jmaa.2007.02.050 | MR 2348489 | Zbl 1123.45004
[31] B. Satco: Nonlinear Volterra integral equations in Henstock integrability setting. Electron. J. Differ. Equ. 2008 (2008), Article ID 39, 9 pages. MR 2392943 | Zbl 1169.45300
[32] B. Satco: Continuous dependence results for set-valued measure differential problems. Electron. J. Qual. Theory Differ. Equ. 2015 (2015), Article ID 79, 15 pages. DOI 10.14232/ejqtde.2015.1.79 | MR 3425546 | Zbl 1349.34051
[33] B. Satco, G. Smyrlis: Applications of Stieltjes derivatives to periodic boundary value inclusions. Mathematics 8 (2020), Article ID 2142, 23 pages. DOI 10.3390/math8122142
[34] B. Satco, G. Smyrlis: Periodic boundary value problems involving Stieltjes derivatives. J. Fixed Point Theory Appl. 22 (2020), Article ID 94, 23 pages. DOI 10.1007/s11784-020-00825-1 | MR 4161917 | Zbl 1464.34008
[35] Š. Schwabik: Generalized Ordinary Differential Equations. Series in Real Analysis 5. World Scientific, Singapore (1992). DOI 10.1142/1875 | MR 1200241 | Zbl 0781.34003
[36] M. Tvrdý: Differential and integral equations in the space of regulated functions. Mem. Differ. Equ. Math. Phys. 25 (2002), 1-104. MR 1903190 | Zbl 1081.34504
[37] W. H. Young: On integrals and derivatives with respect to a function. Proc. Lond. Math. Soc. (2) 15 (1916), 35-63. DOI 10.1112/plms/s2-15.1.35 | MR 1576571 | JFM 46.0386.01

Affiliations:   Valeria Marraffa, Department of Mathematics and Computer Sciences, University of Palermo, Via Archirafi 34, 90123 Palermo, Italy, e-mail: valeria.marraffa@unipa.it; Bianca Satco (corresponding author), Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Universitatii 13, 720225, Suceava, Romania, e-mail: bisatco@usm.ro


 
PDF available at: