Czechoslovak Mathematical Journal, first online, pp. 1-13


On certain $GL(6)$ form and its Rankin-Selberg convolution

Amrinder Kaur, Ayyadurai Sankaranarayanan

Received August 2, 2023.   Published online February 9, 2024.

Abstract:  We consider $L_G(s)$ to be the $L$-function attached to a particular automorphic form $G$ on $GL(6)$. We establish an upper bound for the mean square estimate on the critical line of Rankin-Selberg $L$-function $L_{G \times G}(s)$. As an application of this result, we give an asymptotic formula for the discrete sum of coefficients of $L_{G \times G}(s)$.
Keywords:  Maass form; automorphic form; Rankin-Selberg convolution
Classification MSC:  11F12, 11F30, 11N75

PDF available at:  Springer   Institute of Mathematics CAS

References:
[1] J. Bourgain: Decoupling, exponential sums and the Riemann zeta function. J. Am. Math. Soc. 30 (2017), 205-224. DOI 10.1090/jams/860 | MR 3556291 | Zbl 1352.11065
[2] S. Gelbart, H. Jacquet: A relation between automorphic representations of GL(2) and GL(3). Ann. Sci. Éc. Norm. Supér. (4) 11 (1978), 471-542. DOI 10.24033/asens.1355 | MR 0533066 | Zbl 0406.10022
[3] D. Goldfeld: Automorphic Forms and $L$-Functions for the Group GL$(n,\Bbb{R})$. Cambridge Studies in Advanced Mathematics 99. Cambridge University Press, Cambridge (2006). DOI 10.1017/CBO9780511542923 | MR 2254662 | Zbl 1108.11039
[4] D. R. Heath-Brown: The twelfth power moment of the Riemann-function. Q. J. Math. 29 (1978), 443-462. DOI 10.1093/qmath/29.4.443 | MR 0517737 | Zbl 0394.10020
[5] H. H. Kim: Functoriality for the exterior square of GL$_4$ and the symmetric fourth of GL$_2$. J. Am. Math. Soc. 16 (2003), 139-183. DOI 10.1090/S0894-0347-02-00410-1 | MR 1937203 | Zbl 1018.11024
[6] H. H. Kim, F. Shahidi: Functorial products for GL$_2 \times \rm {GL}_3$ and the symmetric cube for GL$_2$. Ann. Math. (2) 155 (2002), 837-893. DOI 10.2307/3062134 | MR 1923967 | Zbl 1040.11036
[7] R. P. Langlands: Problems in the theory of automorphic forms. Lectures in Modern Analysis and Applications III. Lecture Notes in Mathematics 170. Springer, Berlin (1970), 18-61. DOI 10.1007/BFb0079065 | MR 0302614 | Zbl 0225.14022
[8] Y.-K. Lau, G. Lü: Sums of Fourier coefficients of cusp forms. Q. J. Math. 62 (2011), 687-716. DOI 10.1093/qmath/haq012 | MR 2825478 | Zbl 1269.11044
[9] Y. Lin, R. Nunes, Z. Qi: Strong subconvexity for self-dual GL(3) $L$-functions. Int. Math. Res. Not. 153 (2022), 11453-11470. DOI 10.1093/imrn/rnac153 | MR 4609788 | Zbl 07711446
[10] T. Meurman: On the order of the Maass $L$-function on the critical line. Number Theory. Volume 1. Colloquia Mathematica Societatis János Bolyai 51. North-Holland, Amsterdam (1990), 325-354. MR 1058223 | Zbl 0724.11029
[11] P. D. Nelson: Bounds for standard $L$-functions. Available at https://arxiv.org/abs/2109.15230 (2021), 237 pages. DOI 10.48550/arXiv.2109.15230
[12] A. Perelli: General $L$-functions. Ann. Mat. Pura Appl., IV. Ser. 130 (1982), 287-306. DOI 10.1007/BF01761499 | MR 0663975 | Zbl 0485.10030
[13] R. A. Rankin: Contributions to the theory of Ramanujan's function $\tau(n)$ and similar arithmetical functions I. Proc. Camb. Philos. Soc. 35 (1939), 351-356. DOI 10.1017/S0305004100021095 | MR 0000411 | Zbl 0021.39201
[14] A. Selberg: Bemerkungen über eine Dirichletsche Reihe, die mit der Theorie der Modulformen nahe verbunden ist. Arch. Math. Naturvid. B 43 (1940), 47-50. (In German.) MR 0002626 | Zbl 0023.22201

Affiliations:   Amrinder Kaur (corresponding author), Ayyadurai Sankaranarayanan, School of Mathematics and Statistics, University of Hyderabad, Hyderabad, Telangana, 500046, India, e-mail: amrinder1kaur@gmail.com, sank@uohyd.ac.in


 
PDF available at: