Mathematica Bohemica, first online, pp. 21, 2017


Oscillations of nonlinear difference equations with deviating arguments

George E. Chatzarakis, Julio G. Dix

Received May 14, 2016.  First published May 24, 2017.

Abstract:  This paper is concerned with the oscillatory behavior of first-order nonlinear difference equations with variable deviating arguments. The corresponding difference equations of both retarded and advanced type are studied. Examples illustrating the results are also given.
Keywords:  infinite sum condition; retarded argument; advanced argument; oscillatory solution; nonoscillatory solution
Classification MSC:  39A10, 39A21
DOI:  10.21136/MB.2017.0055-16

PDF available at:  Myris Trade   Institute of Mathematics CAS

References:
[1] L. Berezansky, E. Braverman: On existence of positive solutions for linear difference equations with several delays. Adv. Dyn. Syst. Appl. 1 (2006), 29-47. MR 2287633 | Zbl 1124.39002
[2] G. E. Chatzarakis, R. Koplatadze, I. P. Stavroulakis: Optimal oscillation criteria for first order difference equations with delay argument. Pac. J. Math. 235 (2008), 15-33. DOI 10.2140/pjm.2008.235.15 | MR 2379767 | Zbl 1153.39010
[3] G. E. Chatzarakis, S. Pinelas, I. P. Stavroulakis: Oscillations of difference equations with several deviated arguments. Aequationes Math. 88 (2014), 105-123. DOI 10.1007/s00010-013-0238-2 | MR 3250787 | Zbl 1306.39007
[4] G. E. Chatzarakis, I. P. Stavroulakis: Oscillations of first order linear delay difference equations. Aust. J. Math. Anal. Appl. (electronic only) 3 (2006), Article ID 14, 11 pages. MR 2223018 | Zbl 1096.39003
[5] J. P. Dix, J. G. Dix: Oscillations of solutions to nonlinear first-order delay differential equations. Involve 9 (2016), 465-482. DOI 10.2140/involve.2016.9.465 | MR 3509339 | Zbl 06590119
[6] L. H. Erbe, Q. Kong, B. G. Zhang: Oscillation Theory for Functional-Differential Equations. Pure and Applied Mathematics 190. Marcel Dekker, New York (1994). MR 1309905 | Zbl 0821.34067
[7] L. H. Erbe, B. G. Zhang: Oscillation of discrete analogues of delay equations. Differ. Integral Equ. 2 (1989), 300-309. MR 0983682 | Zbl 0723.39004
[8] G. Ladas: Explicit conditions for the oscillation of difference equations. J. Math. Anal. Appl. 153 (1990), 276-287. DOI 10.1016/0022-247X(90)90278-N | MR 1080131 | Zbl 0718.39002
[9] G. Ladas, C. G. Philos, Y. G. Sficas: Sharp conditions for the oscillation of delay difference equations. J. Appl. Math. Simulation 2 (1989), 101-111. DOI 10.1155/S1048953389000080 | MR 1010549 | Zbl 0685.39004
[10] G. S. Ladde, V. Lakshmikantham, B. G. Zhang: Oscillation Theory of Differential Equations with Deviating Arguments. Pure and Applied Mathematics 110. Marcel Dekker, New York (1987). MR 1017244 | Zbl 0622.34071
[11] B. Li: Oscillation of first order delay differential equations. Proc. Am. Math. Soc. 124 (1996), 3729-3737. DOI 10.1090/S0002-9939-96-03674-X | MR 1363175 | Zbl 0865.34057
[12] X. Li, D. Zhu: Oscillation of advanced difference equations with variable coefficients. Ann. Differ. Equations 18 (2002), 254-263. MR 1940383 | Zbl 1010.39001
[13] X. N. Luo, Y. Zhou, C. F. Li: Oscillation of a nonlinear difference equation with several delays. Math. Bohem. 128 (2003), 309-317. MR 2012607 | Zbl 1055.39015
[14] X. H. Tang, J. S. Yu: Oscillation of delay difference equation. Comput. Math. Appl. 37 (1999), 11-20. DOI 10.1016/S0898-1221(99)00083-8 | MR 1688201 | Zbl 0937.39012
[15] X. H. Tang, R. Y. Zhang: New oscillation criteria for delay difference equations. Comput. Math. Appl. 42 (2001), 1319-1330. DOI 10.1016/S0898-1221(01)00243-7 | MR 1861531 | Zbl 1002.39022
[16] X. Wang: Oscillation of delay difference equations with several delays. J. Math. Anal. Appl. 286 (2003), 664-674. DOI 10.1016/S0022-247X(03)00508-0 | MR 2008855 | Zbl 1033.39017
[17] W. Yan, Q. Meng, J. Yan: Oscillation criteria for difference equation of variable delays. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 13A (2006), Part 2, suppl., 641-647. MR 2219618
[18] B. G. Zhang, Y. Zhou: Oscillations of difference equations with several delays. Comput. Math. Appl. 44 (2002), 817-821. DOI 10.1016/S0898-1221(02)00193-1 | MR 1925823 | Zbl 1035.39010

Affiliations:   George E. Chatzarakis, Department of Electrical Engineering and Department of Electronic Engineering, School of Pedagogical and Technological Education (ASPETE) 14121, Heraklio, Athens, Greece, e-mail: geaxatz@otenet.gr, gea.xatz@aspete.gr; Julio G. Dix, Department of Mathematics, Texas State University, MCS583, Pickard St., San Marcos, TX78666, USA, e-mail: jd01@txstate.edu


 
PDF available at: