Mathematica Bohemica, first online, pp. 1-13, 2017


Geometric properties of Wright function

Sudhananda Maharana, Jugal K. Prajapat, Deepak Bansal

Received August 30, 2016.   First published August 8, 2017.

Abstract:  In the present paper, we investigate certain geometric properties and inequalities for the Wright function and mention a few important consequences of our main results. A nonlinear differential equation involving the Wright function is also investigated.
Keywords:  analytic function; univalent function; starlike function; strongly starlike function; convex function; close-to-convex function; Wright function; Bessel function; subordination of functions
Classification MSC:  30C45, 33C10
DOI:  10.21136/MB.2017.0077-16

PDF available at:  Myris Trade   Institute of Mathematics CAS

References:
[1] D. Bansal, J. K. Prajapat: Certain geometric properties of the Mittag-Leffler functions. Complex Var. Elliptic Equ. 61 (2016), 338-350. DOI 10.1080/17476933.2015.1079628 | MR 3454110 | Zbl 1336.33039
[2] Á. Baricz, P. A. Kupán, R. Szász: The radius of starlikeness of normalized Bessel functions of the first kind. Proc. Am. Math. Soc. 142 (2014), 2019-2025. DOI 10.1090/S0002-9939-2014-11902-2 | MR 3182021 | Zbl 1291.30062
[3] Á. Baricz, S. Ponnusamy: Starlikeness and convexity of generalized Bessel functions. Integral Transforms Spec. Funct. 21 (2010), 641-653. DOI 10.1080/10652460903516736 | MR 2743533 | Zbl 1205.30010
[4] Á. Baricz, R. Szász: The radius of convexity of normalized Bessel functions of the first kind. Anal. Appl. Singap. 12 (2014), 485-509. DOI 10.1142/S0219530514500316 | MR 3252850 | Zbl 1302.33003
[5] L. Brickman, T. H. MacGregor, D. R. Wilken: Convex hulls of some classical families of univalent functions. Trans. Am. Math. Soc. 156 (1971), 91-107. DOI 10.2307/1995600 | MR 0274734 | Zbl 0227.30013
[6] L. de Branges: A proof of the Bieberbach conjecture. Acta Math. 154 (1985), 137-152. DOI 10.1007/BF02392821 | MR 0772434 | Zbl 0573.30014
[7] P. L. Duren: Univalent Functions. Grundlehren der Mathematischen Wissenschaften 259. Springer, New York (1983). MR 0708494 | Zbl 0514.30001
[8] L. Fejér: Untersuchungen über Potenzreihen mit mehrfach monotoner Koeffizientenfolge. Acta Litt. Sci. Szeged 8 (1937), 89-115. Zbl 0016.10803
[9] A. W. Goodman: Univalent Functions. Vol. I. Mariner Publishing, Tampa (1983). MR 0704183 | Zbl 1041.30500
[10] R. Gorenflo, Y. Luchko, F. Mainardi: Analytic properties and applications of the Wright functions. Fract. Cal. Appl. Anal. 2 (1999), 383-414. MR 1752379 | Zbl 1027.33006
[11] D. J. Hallenbeck, S. Ruscheweyh: Subordination by convex functions. Proc. Am. Math. Soc. 52 (1975), 191-195. DOI 10.2307/2040127 | MR 0374403 | Zbl 0311.30010
[12] V. Kiryakova: Generalized Fractional Calculus and Applications. Pitman Research Notes in Mathematics Series 301. Longman Scientific & Technical, Harlow; John Wiley & Sons, New York (1994). MR 1265940 | Zbl 0882.26003
[13] F. Mainardi: The fundamental solutions for the fractional diffusion-wave equation. Appl. Math. Lett. 9 (1996), 23-28. DOI 10.1016/0893-9659(96)00089-4 | MR 1419811 | Zbl 0879.35036
[14] S. S. Miller, P. T. Mocanu: Univalence of Gaussian and confluent hypergeometric functions. Proc. Am. Math. Soc. 110 (1990), 333-342. DOI 10.2307/2048075 | MR 1017006 | Zbl 0707.30012
[15] S. S. Miller, P. T. Mocanu: Differential Subordinations. Theory and Applications. Pure and Applied Mathematics 225. A Series of Monographs and Textbooks. Marcel Dekker, New York (2000). MR 1760285 | Zbl 0954.34003
[16] S. R. Mondal, A. Swaminathan: Geometric properties of generalized Bessel functions. Bull. Malays. Math. Sci. Soc. (2) 35 (2012), 179-194. MR 2865131 | Zbl 1232.30013
[17] N. Mustafa: Geometric properties of normalized Wright functions. Math. Comput. Appl. 21 (2016), Paper No. 14, 10 pages. DOI 10.3390/mca21020014 | MR 3520354
[18] S. Ozaki: On the theory of multivalent functions II. Sci. Rep. Tokyo Bunrika Daigaku. Sect. A 4 (1941), 45-87. MR 0048577 | Zbl 0063.06075
[19] K. Piejko, J. Sokół: On the convolution and subordination of convex functions. Appl. Math. Lett. 25 (2012), 448-453. DOI 10.1016/j.aml.2011.09.034 | MR 2856004 | Zbl 1250.30016
[20] S. Ponnusamy: The Hardy spaces of hypergeometric functions. Complex Variables, Theory Appl. 29 (1996), 83-96. MR 1382005 | Zbl 0845.30036
[21] S. Ponnusamy: Close-to-convexity properties of Gaussian hypergeometric functions. J. Comput. Appl. Math. 88 (1998), 327-337. DOI 10.1016/S0377-0427(97)00221-5 | MR 1613250 | Zbl 0901.30007
[22] J. K. Prajapat: Certain geometric properties of normalized Bessel functions. Appl. Math. Lett. 24 (2011), 2133-2139. DOI 10.1016/j.aml.2011.06.014 | MR 2826152 | Zbl 1231.33004
[23] J. K. Prajapat: Certain geometric properties of the Wright function. Integral Transforms Spec. Funct. 26 (2015), 203-212. DOI 10.1080/10652469.2014.983502 | MR 3293039 | Zbl 1306.30006
[24] S. Ruscheweyh, V. Singh: On the order of starlikeness of hypergeometric functions. J. Math. Anal. Appl. 113 (1986), 1-11. DOI 10.1016/0022-247X(86)90329-X | MR 0826655 | Zbl 0598.30021
[25] R. Szász, P. A. Kupán: About the univalence of the Bessel functions. Stud. Univ. Babeş-Bolyai Math. 54 (2009), 127-132. MR 2486953 | Zbl 1240.30078
[26] N. Tuneski: On some simple sufficient conditions for univalence. Math. Bohem. 126 (2001), 229-236. MR 1826485 | Zbl 0986.30012
[27] H. S. Wilf: Subordinating factor sequences for convex maps of the unit circle. Proc. Am. Math. Soc. 12 (1961), 689-693. DOI 10.2307/2034857 | MR 0125214 | Zbl 0100.07201
[28] E. M. Wright: On the coefficients of power series having exponential singularities. J. London Math. Soc. 8 (1933), 71-80. DOI 10.1112/jlms/s1-8.1.71 | MR 1574787 | Zbl 0006.19704
[29] N. Yağmur: Hardy space of Lommel functions. Bull. Korean Math. Soc. 52 (2015), 1035-1046. MR 3353311 | Zbl 1318.30038
[30] N. Yağmur, H. Orhan: Starlikeness and convexity of generalized Struve functions. Abstr. Appl. Anal. 2013 (2013), Article ID 954513, 6 pages. DOI 10.1155/2013/954513 | MR 3035216 | Zbl 1272.30033
[31] N. Yağmur, H. Orhan: Hardy space of generalized Struve functions. Complex Var. Elliptic Equ. 59 (2014), 929-936. DOI 10.1080/17476933.2013.799148 | MR 3195920 | Zbl 1290.30066

Affiliations:   Sudhananda Maharana, Jugal K. Prajapat, Department of Mathematics, Central University of Rajasthan, Bandarsindri, Kishangarh-305817, Dist.-Ajmer, Rajasthan, India, e-mail: snmmath@gmail.com, jkprajapat@gmail.com; Deepak Bansal, Department of Mathematics, College of Engineering and Technology, Karni Industrial Area, Pugal Road, Bikaner-334004, Rajasthan, India, e-mail: deepakbansal_79@yahoo.com


 
PDF available at: