Mathematica Bohemica, Vol. 145, No. 4, pp. 435-448, 2020


Oscillation of deviating differential equations

George E. Chatzarakis

Received January 8, 2019.   Published online January 21, 2020.

Abstract:  Consider the first-order linear delay (advanced) differential equation $x'(t)+p(t)x( \tau(t)) =0\quad(x'(t)-q(t)x(\sigma(t)) =0),\quad t\geq t_0$, where $p$ $(q)$ is a continuous function of nonnegative real numbers and the argument $\tau(t)$ $(\sigma(t))$ is not necessarily monotone. Based on an iterative technique, a new oscillation criterion is established when the well-known conditions $\limsup\limits_{t\rightarrow\infty}\int_{\tau(t)}^tp(s) {\rm d}s>1\quad\biggl(\limsup\limits_{t\rightarrow\infty}\int_t^{\sigma(t)}q(s) {\rm d}s>1\bigg)$ and $\liminf_{t\rightarrow\infty}\int_{\tau(t)}^tp(s) {\rm d}s>\frac1{\ee}\quad\biggl(\liminf_{t\rightarrow\infty}\int_t^{\sigma(t)}q(s) {\rm d}s>\frac1{\ee}\bigg)$ are not satisfied. An example, numerically solved in MATLAB, is also given to illustrate the applicability and strength of the obtained condition over known ones.
Keywords:  differential equation; non-monotone argument; oscillatory solution; nonoscillatory solution; Grönwall inequality
Classification MSC:  34K06, 34K11


References:
[1] E. Braverman, B. Karpuz: On oscillation of differential and difference equations with non-monotone delays. Appl. Math. Comput. 218 (2011), 3880-3887. DOI 10.1016/j.amc.2011.09.035 | MR 2851485 | Zbl 1256.39013
[2] G. E. Chatzarakis: Differential equations with non-monotone arguments: Iterative oscillation results. J. Math. Comput. Sci. 6 (2016), 953-964.
[3] G. E. Chatzarakis: On oscillation of differential equations with non-monotone deviating arguments. Mediterr. J. Math. 14 (2017), Paper No. 82, 17 pages. DOI 10.1007/s00009-017-0883-0 | MR 3620160 | Zbl 1369.34088
[4] G. E. Chatzarakis, I. Jadlovská: Improved iterative oscillation tests for first-order deviating differential equations. Opusc. Math. 38 (2018), 327-356. DOI 10.7494/OpMath.2018.38.3.327 | MR 3781617 | Zbl 1405.34056
[5] G. E. Chatzarakis, I. Jadlovská: Oscillations in differential equations caused by non-monotone arguments. To appear in Nonlinear Stud.
[6] G. E. Chatzarakis, T. Li: Oscillation criteria for delay and advanced differential equations with nonmonotone arguments. Complexity 2018 (2018), Article ID 8237634, 18 pages. DOI 10.1155/2018/8237634 | Zbl 1407.34045
[7] G. E. Chatzarakis, Ö. Öcalan: Oscillations of differential equations with several non-monotone advanced arguments. Dyn. Syst. 30 (2015), 310-323. DOI 10.1080/14689367.2015.1036007 | MR 3373715 | Zbl 1330.34107
[8] H. A. El-Morshedy, E. R. Attia: New oscillation criterion for delay differential equations with non-monotone arguments. Appl. Math. Lett. 54 (2016), 54-59. DOI 10.1016/j.aml.2015.10.014 | MR 3434455 | Zbl 1331.34132
[9] L. H. Erbe, Q. Kong, B. G. Zhang: Oscillation Theory for Functional Differential Equations. Pure and Applied Mathematics 190. Marcel Dekker, New York (1995). MR 1309905 | Zbl 0821.34067
[10] L. H. Erbe, B. G. Zhang: Oscillation for first order linear differential equations with deviating arguments. Differ. Integral Equ. 1 (1988), 305-314. MR 929918 | Zbl 0723.34055
[11] N. Fukagai, T. Kusano: Oscillation theory of first order functional-differential equations with deviating arguments. Ann. Mat. Pura Appl., IV. Ser. 136 (1984), 95-117. DOI 10.1007/BF01773379 | MR 765918 | Zbl 0552.34062
[12] I. Györi, G. Ladas: Oscillation Theory of Delay Differential Equations. With Applications. Clarendon Press, Oxford (1991). MR 1168471 | Zbl 0780.34048
[13] R. G. Koplatadze, T. A. Chanturiya: Oscillating and monotone solutions of first order differential equations with deviating argument. Differ. Uravn. 18 (1982), 1463-1465. (In Russian.) MR 0671174 | Zbl 0496.34044
[14] R. G. Koplatadze, G. Kvinikadze: On the oscillation of solutions of first-order delay differential inequalities and equations. Georgian Math. J. 1 (1994), 675-685. DOI 10.1007/BF02254685 | MR 1296574 | Zbl 0810.34068
[15] M. K. Kwong: Oscillation of first-order delay equations. J. Math. Anal. Appl. 156 (1991), 274-286. DOI 10.1016/0022-247X(91)90396-H | MR 1102611 | Zbl 0727.34064
[16] G. Ladas, V. Lakshmikantham, J. S. Papadakis: Oscillations of higher-order retarded differential equations generated by the retarded arguments. Delay and Functional Differential Equations and Their Applications (K. Schmitt, ed.). Academic Press, New York (1972), 219-231. DOI 10.1016/B978-0-12-627250-5.50013-7 | MR 0387776 | Zbl 0273.34052
[17] G. S. Ladde: Oscillations caused by retarded perturbations of first order linear ordinary differential equations. Atti Accad. Naz. Lincei, VIII. Ser., Rend., Cl. Sci. Fis. Mat. Nat. 63 (1977), 351-359. MR 0548601 | Zbl 0402.34058
[18] G. S. Ladde, V. Lakshmikantham, B. G. Zhang: Oscillation Theory of Differential Equations with Deviating Arguments. Pure and Applied Mathematics 110. Marcel Dekker, New York (1987). MR 1017244 | Zbl 0832.34071
[19] X. Li, D. Zhu: Oscillation and nonoscillation of advanced differential equations with variable coefficients. J. Math. Anal. Appl. 269 (2002), 462-488. DOI 10.1016/S0022-247X(02)00029-X | MR 1907126 | Zbl 1013.34067
[20] A. D. Myshkis: Linear homogeneous differential equations of the first order with deviating arguments. Usp. Mat. Nauk 5 (1950), 160-162. (In Russian.) MR 0036423 | Zbl 0041.42108
[21] J. S. Yu, Z. C. Wang, B. G. Zhang, X. Z. Qian: Oscillations of differential equations with deviating arguments. Panam. Math. J. 2 (1992), 59-78. MR 1160129 | Zbl 0845.34082
[22] B. G. Zhang: Oscillation of solutions of the first-order advanced type differential equations. Sci. Exploration 2 (1982), 79-82. MR 713776
[23] D. Zhou: On some problems on oscillation of functional differential equations of first order. J. Shandong Univ., Nat. Sci. Ed. 25 (1990), 434-442. Zbl 0726.34060

Affiliations:   George E. Chatzarakis, Department of Electrical and Electronic Engineering Educators, School of Pedagogical and Technological Education (ASPETE), 14121 N. Heraklio, Athens, Greece, e-mail: geaxatz@otenet.gr, gea.xatz@aspete.gr


 
PDF available at: