Applications of Mathematics, Vol. 62, No. 4, pp. 297-317, 2017

Method of fundamental solutions for biharmonic equation based on Almansi-type decomposition

Koya Sakakibara

Received January 30, 2017.  First published July 20, 2017.

Abstract:  The aim of this paper is to analyze mathematically the method of fundamental solutions applied to the biharmonic problem. The key idea is to use Almansi-type decomposition of biharmonic functions, which enables us to represent the biharmonic function in terms of two harmonic functions. Based on this decomposition, we prove that an approximate solution exists uniquely and that the approximation error decays exponentially with respect to the number of the singular points. We finally present results of numerical experiments, which verify the sharpness of our error estimate.
Keywords:  method of fundamental solutions; biharmonic equation; Almansi-type decomposition
Classification MSC:  65N80, 31A30, 49M27
DOI:  10.21136/AM.2017.0018-17

[1] E. Almansi: Sull'integrazione dell'equazione differentiale $\triangle^{2n}=0$. Annali di Mat. (3) 2 (1897), 1-51. (In Italian.) DOI 10.1007/bf02419286 | JFM 30.0331.03
[2] S. Bock, K. Gürlebeck: On a spatial generalization of the Kolosov-Muskhelishvili formulae. Math. Methods Appl. Sci. 32 (2009), 223-240. DOI 10.1002/mma.1033 | MR 2478914 | Zbl 1151.74308
[3] A. Karageorghis: The method of fundamental solutions for elliptic problems in circular domains with mixed boundary conditions. Numer. Algorithms 68 (2015), 185-211. DOI 10.1007/s11075-014-9900-6 | MR 3296706 | Zbl 1308.65210
[4] A. Karageorghis, G. Fairweather: The method of fundamental solutions for the numerical solution of the biharmonic equation. J. Comput. Phys. 69 (1987), 434-459. DOI 10.1016/0021-9991(87)90176-8 | MR 0888063 | Zbl 0618.65108
[5] A. Karageorghis, G. Fairweather: The Almansi method of fundamental solutions for solving biharmonic problems. Int. J. Numer. Methods Eng. 26 (1988), 1665-1682. DOI 10.1002/nme.1620260714 | Zbl 0639.65066
[6] M. Katsurada: A mathematical study of the charge simulation method by use of peripheral conformal mappings. Mem. Inst. Sci. Tech. Meiji Univ. 35 (1998), 195-212.
[7] M. Katsurada, H. Okamoto: A mathematical study of the charge simulation method. I. J. Fac. Sci., Univ. Tokyo, Sect. I A 35 (1988), 507-518. MR 0965011 | Zbl 0662.65100
[8] M. Krakowski, A. Charnes: Stokes' Paradox and Biharmonic Flows. Report 37, Carnegie Institute of Technology, Department of Mathematics, Pittsburgh (1953).
[9] W. E. Langlois, M. O. Deville: Slow Viscous Flow. Springer, Cham (2014). DOI 10.1007/978-3-319-03835-3 | MR 3186274 | Zbl 1302.76003
[10] Z.-C. Li, M.-G. Lee, J. Y. Chiang, Y. P. Liu: The Trefftz method using fundamental solutions for biharmonic equations. J. Comput. Appl. Math. 235 (2011), 4350-4367. DOI 10.1016/ | MR 2802010 | Zbl 1222.65131
[11] A. Poullikkas, A. Karageorghis, G. Georgiou: Methods of fundamental solutions for harmonic and biharmonic boundary value problems. Comput. Mech. 21 (1998), 416-423. DOI 10.1007/s004660050320 | MR 1628005 | Zbl 0913.65104
[12] K. Sakakibara: Analysis of the dipole simulation method for two-dimensional Dirichlet problems in Jordan regions with analytic boundaries. BIT 56 (2016), 1369-1400. DOI 10.1007/s10543-016-0605-1 | MR 3576615 | Zbl 06667568

Affiliations:   Koya Sakakibara, Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba Meguro-ku Tokyo 153-8914, Japan, e-mail:

Springer subscribers can access the papers on Springer website.
Access to full texts on this site is restricted to subscribers of Myris Trade. To activate your access, please send an e-mail to
[List of online first articles] [Contents of Applications of Mathematics] [Full text of the older issues of Applications of Mathematics at DML-CZ]

PDF available at: