Institute of Mathematics

Control variational method approach to bending and contact problems for Gao beam

Jitka Machalová, Horymír Netuka

Received June 23, 2017.   First published November 30, 2017.

Abstract:  This paper deals with a nonlinear beam model which was published by D. Y. Gao in 1996. It is considered either pure bending or a unilateral contact with elastic foundation, where the normal compliance condition is employed. Under additional assumptions on data, higher regularity of solution is proved. It enables us to transform the problem into a control variational problem. For basic types of boundary conditions, suitable transformations of the problem are derived. The control variational problem contains a simple linear state problem and it is solved by the conditioned gradient method. Illustrative numerical examples are introduced in order to compare the Gao beam with the classical Euler-Bernoulli beam.
Keywords:  nonlinear beam; elastic foundation; contact problem; normal compliance condition; control variational method; finite element method
Classification MSC:  49J15, 49S05, 65K10, 74K10, 74M15
DOI:  10.21136/AM.2017.0168-17

References:
[1] R. A. Adams: Sobolev Spaces. Pure and Applied Mathematics 65, Academic Press, New York (1975). MR 0450957 | Zbl 0314.46030
[2] K. T. Andrews, Y. Dumont, M. F. M'Bengue, J. Purcell, M. Shillor: Analysis and simulations of a nonlinear dynamic beam. Z. Angew. Math. Phys. 63 (2012), 1005-1019. DOI 10.1007/s00033-012-0233-9 | MR 3000712 | Zbl 1261.35093
[3] K. T. Andrews, K. L. Kuttler, M. Shillor: Dynamic Gao beam in contact with a reactive or rigid foundation. Advances in Variational and Hemivariational Inequalities (W. Han et al., eds.). Advances in Mechanics and Mathematics 33, Springer, Cham (2015), pp. 225-248. DOI 10.1007/978-3-319-14490-0_9 | MR 3380538 | Zbl 1317.74049
[4] V. Arnautu, H. Langmach, J. Sprekels, D. Tiba: On the approximation and the optimization of plates. Numer. Funct. Anal. Optimization 21 (2000), 337-354. DOI 10.1080/01630560008816960 | MR 1769880 | Zbl 0976.49025
[5] M. Barboteu, M. Sofonea, D. Tiba: The control variational method for beams in contact with deformable obstacles. ZAMM, Z. Angew. Math. Mech. 92 (2012), 25-40. DOI 10.1002/zamm.201000161 | MR 2871899 | Zbl 1304.74033
[6] K. Cai, D. Y. Gao, Q. H. Qin: Post-buckling solutions of hyper-elastic beam by canonical dual finite element method. Math. Mech. Solids 19 (2014), 659-671. DOI 10.1177/1081286513482483 | MR 3228236 | Zbl 1298.74085
[7] J. G. Eisley, A. M. Waas: Analysis of Structures. An Introduction Including Numerical Methods. John Wiley & Sons, Hoboken (2011). DOI 10.1002/9781119993278 | Zbl 1232.74001
[8] S. Fučík, A. Kufner: Nonlinear Differential Equations. Studies in Applied Mechanics 2. Elsevier Scientific Publishing Company, Amsterdam (1980). MR 0558764 | Zbl 0426.35001
[9] D. Y. Gao: Nonlinear elastic beam theory with application in contact problems and variational approaches. Mech. Res. Commun. 23 (1996), 11-17. DOI 10.1016/0093-6413(95)00071-2 | MR 1371779 | Zbl 0843.73042
[10] D. Y. Gao: Duality Principles in Nonconvex Systems. Theory, Methods and Applications. Nonconvex Optimization and Its Applications 39, Kluwer Academic Publihers, Dordrecht (2000). DOI 10.1007/978-1-4757-3176-7 | MR 1773838 | Zbl 0940.49001
[11] D. Y. Gao, J. Machalová, H. Netuka: Mixed finite element solutions to contact problems of nonlinear Gao beam on elastic foundation. Nonlinear Anal., Real World Appl. 22 (2015), 537-550. DOI 10.1016/j.nonrwa.2014.09.012 | MR 3280850 | Zbl 1326.74075
[12] D. Y. Gao, R. W. Ogden: Closed-form solutions, extremality and nonsmoothness criteria in a large deformation elasticity problem. Z. Angew. Math. Phys. 59 (2008), 498-517. DOI 10.1007/s00033-007-7047-1 | MR 2399352 | Zbl 1143.74018
[13] R. Glowinski, J. L. Lions, R. Trémolières: Numerical Analysis of Variational Inequalities. Studies in Mathematics and Its Applications 8, North-Holland Publishing, Amsterdam (1981). DOI 10.1016/s0168-2024(08)70201-7 | MR 0635927 | Zbl 0463.65046
[14] I. Hlaváček, J. Haslinger, J. Nečas, J. Lovíšek: Solution of Variational Inequalities in Mechanics. Applied Mathematical Sciences 66, Springer, New York (1988). DOI 10.1007/978-1-4612-1048-1 | MR 0952855 | Zbl 0654.73019
[15] J. V. Horák, H. Netuka: Mathematical model of pseudointeractive set: 1D body on non-linear subsoil. I. Theoretical aspects. Engineering Mechanics 14 (2007), 311-325.
[16] J. L. Lions: Optimal Control of Systems Governed by Partial Differential Equations. Die Grundlehren der mathematischen Wissenschaften 170, Springer, Berlin (1971). MR 0271512 | Zbl 0203.09001
[17] J. Machalová, H. Netuka: Solving the beam bending problem with an unilateral Winkler foundation. Numerical Analysis and Applied Mathematics ICNAAM 2011 (T. E. Simos et al., eds.). AIP Conference Proceedings 1389, AIP-Press, Springer (2011), pp. 1820-1824. DOI 10.1063/1.3636963
[18] J. Machalová, H. Netuka: Solution of contact problems for nonlinear Gao beam and obstacle. J. Appl. Math. 2015 (2015), Article ID 420649, 12 pages. DOI 10.1155/2015/420649 | MR 3399550
[19] J. Machalová, H. Netuka: Solution of contact problems for Gao beam and elastic foundation. To appear in Math. Mech. Solids. Special issue on Inequality Problems in Contact Mechanics (2017). DOI 10.1177/1081286517732382
[20] P. Neittaanmäki, J. Sprekels, D. Tiba: Optimization of Elliptic Systems. Theory and Applications. Springer Monographs in Mathematics, Springer, New York (2006). DOI 10.1007/b138797 | MR 2183776 | Zbl 1106.49002
[21] J. N. Reddy: An Introduction to the Finite Element Method. McGraw-Hill Book Company, New York (2006). Zbl 0561.65079
[22] M. Shillor, M. Sofonea, J. J. Telega: Models and Analysis of Quasistatic Contact: Variational Methods. Lecture Notes in Physics 655, Springer, Berlin (2004). DOI 10.1007/b99799 | Zbl 1069.74001
[23] R. Šimeček: Optimal design of an elastic beam with a unilateral elastic foundation: semicoercive state problem. Appl. Math., Praha 58 (2013), 329-346. DOI 10.1007/s10492-013-0016-4 | MR 3066824 | Zbl 1289.49002
[24] M. Sofonea, A. Matei: Mathematical Models in Contact Mechanics. London Mathematical Society Lecture Note Series 398, Cambridge University Press, Cambridge (2012). DOI 10.1017/CBO9781139104166 | Zbl 1255.49002
[25] M. Sofonea, D. Tiba: The control variational method for contact of Euler-Bernoulli beams. Bull. Trans. Univ. Braşov, Ser. III, Math. Inform. Phys. 2 (2009), 127-136. MR 2642501 | Zbl 1224.74088
[26] S. Sysala: Unilateral elastic subsoil of Winkler's type: Semi-coercive beam problem. Appl. Math., Praha 53 (2008), 347-379. DOI 10.1007/s10492-008-0030-0 | MR 2433726 | Zbl 1199.49051
[27] S. Sysala: Numerical modelling of semi-coercive beam problem with unilateral elastic subsoil of Winkler's type. Appl. Math., Praha 55 (2010), 151-187. DOI 10.1007/s10492-010-0006-8 | MR 2600940 | Zbl 1224.74011
[28] F. Tröltzsch: Optimal Control of Partial Differential Equations. Theory, Methods and Applications. Graduate Studies in Mathematics 112, American Mathematical Society, Providence (2010). DOI 10.1090/gsm/112 | MR 2583281 | Zbl 1195.49001

Affiliations:   Jitka Machalová, Horymír Netuka, Department of Mathematical Analysis and Applications of Mathematics, Faculty of Science, Palacký University, 17. listopadu 12, 771 46 Olomouc, Czech Republic, e-mail: jitka.machalova@upol.cz, horymir.netuka@upol.cz

Springer subscribers can access the papers on Springer website.