Institute of Mathematics

A penalty method for the time-dependent Stokes problem with the slip boundary condition and its finite element approximation

Guanyu Zhou, Takahito Kashiwabara, Issei Oikawa

Received November 28, 2016.  First published July 5, 2017.

Abstract:  We consider the finite element method for the time-dependent Stokes problem with the slip boundary condition in a smooth domain. To avoid a variational crime of numerical computation, a penalty method is introduced, which also facilitates the numerical implementation. For the continuous problem, the convergence of the penalty method is investigated. Then we study the fully discretized finite element approximations for the penalty method with the P1/P1-stabilization or P1b/P1 element. For the discretization of the penalty term, we propose reduced and non-reduced integration schemes, and obtain an error estimate for velocity and pressure. The theoretical results are verified by numerical experiments.
Keywords:  penalty method; Stokes problem; finite element method; error estimate
Classification MSC:  65N30, 35Q30
DOI:  10.21136/AM.2017.0328-16

References:
[1] E. Bänsch, K. Deckelnick: Optimal error estimates for the Stokes and Navier-Stokes equations with slip-boundary condition. M2AN, Math. Model. Numer. Anal. 33 (1999), 923-938. DOI 10.1051/m2an:1999126 | MR 1726716 | Zbl 0948.76035
[2] E. Bänsch, B. Höhn: Numerical treatment of the Navier-Stokes equations with slip boundary condition. SIAM J. Sci. Comput. 21 (2000), 2144-2162. DOI 10.1137/S1064827598343991 | MR 1762035 | Zbl 0970.76056
[3] S. C. Brenner, L. R. Scott: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics 15 Springer, New York (2002). DOI 10.1007/978-0-387-75934-0 | MR 1894376 | Zbl 0804.65101
[4] A. Çağlar: Weak imposition of boundary conditions for the Navier-Stokes equations. Appl. Math. Comput. 149 (2004), 119-145. DOI 10.1016/S0096-3003(02)00960-8 | MR 2030987 | Zbl 1100.76034
[5] I. Dione, C. Tibirna, J. Urquiza: Stokes equations with penalised slip boundary conditions. Int. J. Comput. Fluid Dyn. 27 (2013), 283-296. DOI 10.1080/10618562.2013.821114 | MR 3171814
[6] I. Dione, J. M. Urquiza: Penalty: finite element approximation of Stokes equations with slip boundary conditions. Numer. Math. 129 (2015), 587-610. DOI 10.1007/s00211-014-0646-9 | MR 3311462 | Zbl 1308.76162
[7] C. Geuzaine, J.-F. Remacle: Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 79 (2009), 1309-1331. DOI 10.1002/nme.2579 | MR 2566786 | Zbl 1176.74181
[8] V. Girault, P.-A. Raviart: Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms. Springer Series in Computational Mathematics 5 Springer, Berlin (1986). DOI 10.1007/978-3-642-61623-5 | MR 0851383 | Zbl 0585.65077
[9] F. Hecht: New development in freefem++. J. Numer. Math. 20 (2012), 251-265. DOI 10.1515/jnum-2012-0013 | MR 3043640 | Zbl 1266.68090
[10] J. G. Heywood, R. Rannacher: Finite element approximation of the nonstationary Navier-Stokes problem. I. Regularity of solutions and second-order error estimates for spatial discretization. SIAM J. Numer. Anal. 19 (1982), 275-311. DOI 10.1137/0719018 | MR 0650052 | Zbl 0487.76035
[11] V. John: Slip with friction and penetration with resistance boundary conditions for the Navier-Stokes equations - numerical tests and aspects of the implementation. J. Comput. Appl. Math. 147 (2002), 287-300. DOI 10.1016/S0377-0427(02)00437-5 | MR 1933597 | Zbl 1021.76028
[12] T. Kashiwabara, I. Oikawa, G. Zhou: Penalty method with P1/P1 finite element approximation for the Stokes equations under the slip boundary condition. Numer. Math. 134 (2016), 705-740. DOI 10.1007/s00211-016-0790-5 | MR 3563279 | Zbl 06654608
[13] P. Knobloch: Discrete Friedrich's and Korn's inequalities in two and three dimensions. East-West J. Numer. Math. 4 (1996), 35-51. MR 1393064 | Zbl 0854.65098
[14] P. Knobloch: Variational crimes in a finite element discretization of 3D Stokes equations with nonstandard boundary conditions. East-West J. Numer. Math. 7 (1999), 133-158. MR 1699239 | Zbl 0958.76043
[15] W. Layton: Weak imposition of "no-slip" conditions in finite element methods. Comput. Math. Appl. 38 (1999), 129-142. DOI 10.1016/S0898-1221(99)00220-5 | MR 1707832 | Zbl 0953.76050
[16] A. Logg, K.-A. Mardal, G. Wells, Editors: Automated Solution of Differential Equations by the Finite Element Method. The FEniCS Bbook. Lecture Notes in Computational Science and Engineering 84 Springer, Heidelberg (2012). DOI 10.1007/978-3-642-23099-8 | MR 3075806 | Zbl 1247.65105
[17] H. Saito, L. E. Scriven: Study of coating flow by the finite element method. J. Comput. Phys. 42 (1981), 53-76. DOI 10.1016/0021-9991(81)90232-1 | Zbl 0466.76035
[18] Y. Shibata, R. Shimada: On a generalized resolvent estimate for the Stokes system with Robin boundary condition. J. Math. Soc. Japan 59 (2007), 469-519. DOI 10.2969/jmsj/05920469 | MR 2325694 | Zbl 1127.35043
[19] Y. Stokes, G. Carey: On generalized penalty approaches for slip, free surface and related boundary conditions in viscous flow simulation. Int. J. Numer. Meth. Heat and Fluid Flow 21 (2011), 668-702. DOI 10.1108/09615531111148455
[20] M. Tabata: Uniform solvability of finite element solutions in approximate domains. Japan J. Ind. Appl. Math. 18 (2001), 567-585. DOI 10.1007/BF03168591 | MR 1842928 | Zbl 0985.65142
[21] M. Tabata: Finite element approximation to infinite Prandtl number Boussinesq equations with temperature-dependent coefficients - Thermal convection problems in a spherical shell. Future Gener. Comput. Syst. 22 521-531 (2006). DOI 10.1016/j.future.2005.04.008
[22] M. Tabata, A. Suzuki: A stabilized finite element method for the Rayleigh-Bénard equations with infinite Prandtl number in a spherical shell. Comput. Methods Appl. Mech. Eng. 190 (2000), 387-402. DOI 10.1016/S0045-7825(00)00209-7 | MR 1808485 | Zbl 0973.76056
[23] M. Tabata, D. Tagami: Error estimates for finite element approximations of drag and lift in nonstationary Navier-Stokes flows. Japan J. Ind. Appl. Math. 17 (2000), 371-389. DOI 10.1007/BF03167373 | MR 1794176 | Zbl 1306.76026
[24] R. Temam: Navier-Stokes Equations. Theory and Numerical Analysis. AMS Chelsea Publishing, Providence (2001). DOI 10.1090/chel/343 | MR 1846644 | Zbl 0981.35001
[25] R. Verfürth: Finite element approximation of steady Navier-Stokes equations with mixed boundary conditions. RAIRO, Modélisation Math. Anal. Numér. 19 (1985), 461-475. DOI 10.1051/m2an/1985190304611 | MR 0807327 | Zbl 0579.76024
[26] R. Verfürth: Finite element approximation of incompressible Navier-Stokes equations with slip boundary condition. Numer. Math. 50 (1987), 697-721. DOI 10.1007/BF01398380 | MR 0884296 | Zbl 0596.76031
[27] R. Verfürth: Finite element approximation of incompressible Navier-Stokes equations with slip boundary condition. II. Numer. Math. 59 (1991), 615-636. DOI 10.1007/BF01385799 | MR 1124131 | Zbl 0739.76034
[28] G. Zhou, T. Kashiwabara, I. Oikawa: Penalty method for the stationary Navier-Stokes problems under the slip boundary condition. J. Sci. Comput. 68 (2016), 339-374. DOI 10.1007/s10915-015-0142-0 | MR 3510584 | Zbl 06607354

Affiliations:   Guanyu Zhou, Department of Applied Mathematics, The Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-Ku, Tokyo, 162-8601 Japan, e-mail: zhoug@rs.tus.ac.jp, koolewind@gmail.com; Takahito Kashiwabara, The Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba Meguro-ku Tokyo 153-8914, Japan, e-mail: tkashiwa@ms.u-tokyo.ac.jp; Issei Oikawa, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, 169-8555 Tokyo, Japan, e-mail: oikawa@aoni.waseda.jp

Springer subscribers can access the papers on Springer website.