Applications of Mathematics, Vol. 63, No. 1, pp. 79-105, 2018


A zero-inflated geometric INAR(1) process with random coefficient

Hassan S. Bakouch, Mehrnaz Mohammadpour, Masumeh Shirozhan

Received March 26, 2017.   First published January 25, 2018.

Abstract:  Many real-life count data are frequently characterized by overdispersion, excess zeros and autocorrelation. Zero-inflated count time series models can provide a powerful procedure to model this type of data. In this paper, we introduce a new stationary first-order integer-valued autoregressive process with random coefficient and zero-inflated geometric marginal distribution, named ZIGINAR$_{\rm RC}(1)$ process, which contains some sub-models as special cases. Several properties of the process are established. Estimators of the model parameters are obtained and their performance is checked by a small Monte Carlo simulation. Also, the behavior of the inflation parameter of the model is justified. We investigate an application of the process using a real count climate data set with excessive zeros for the number of tornados deaths and illustrate the best performance of the proposed process as compared with a set of competitive INAR(1) models via some goodness-of-fit statistics. Consequently, forecasting for the data is discussed with estimation of the transition probability and expected run length at state zero. Moreover, for the considered data, a test of the random coefficient for the proposed process is investigated.
Keywords:  randomized binomial thinning; geometric minima; estimation; likelihood ratio test; mixture distribution; realization with random size
Classification MSC:  62M10


References:
[1] M. A. Al-Osh, E.-E. A. A. Aly: First order autoregressive time series with negative binomial and geometric marginals. Commun. Stat. Theory. Methods. 21 (1992), 2483-2492. DOI 10.1080/03610929208830925 | MR 1186065 | Zbl 0775.62225
[2] M. A. Al-Osh, A. A. Alzaid: First-order integer-valued autoregressive (INAR(1)) process. J. Time. Ser. Anal. 8 (1987), 261-275. DOI 10.1111/j.1467-9892.1987.tb00438.x | MR 0903755 | Zbl 0617.62096
[3] E.-E. A. A. Aly, N. Bouzar: On some integer-valued autoregressive moving average models. J. Multivariate Anal. 50 (1994), 132-151. DOI 10.1006/jmva.1994.1038 | MR 1292612 | Zbl 0811.62084
[4] A. A. Alzaid, M. A. Al-Osh: First-order integer-valued autoregressive (INAR(1)) process: distributional and regression properties. Stat. Neerl. 42 (1988), 53-61. DOI 10.1111/j.1467-9574.1988.tb01521.x | MR 0959714 | Zbl 0647.62086
[5] A. A. Alzaid, M. A. Al-Osh: Some autoregressive moving average processes with generalized Poisson marginal distributions. Ann. Inst. Stat. Math. 45 (1993), 223-232. DOI 10.1007/BF00775809 | MR 1232490 | Zbl 0777.62085
[6] H. S. Bakouch, M. M. Ristić: Zero truncated Poisson integer-valued AR(1) model. Metrika 72 (2010), 265-280. DOI 10.1007/s00184-009-0252-5 | MR 2725101 | Zbl 1200.62099
[7] W. Barreto-Souza: Zero-modified geometric INAR(1) process for modelling count time series with deflation or inflation of zeros. J. Time. Ser. Anal. 36 (2015), 839-852. DOI 10.1111/jtsa.12131 | MR 3419670 | Zbl 1330.62333
[8] M. Bourguignon, K. L. P. Vasconcellos: First order non-negative integer valued autoregressive processes with power series innovations. Braz. J. Probab. Stat. 29 (2015), 71-93. DOI 10.1214/13-BJPS229 | MR 3299108 | Zbl 1329.62370
[9] D. Gomes, L. C. e Castro: Generalized integer-valued random coefficient for a first order structure autoregressive (RCINAR) process. J. Stat. Plann. Inference 139 (2009), 4088-4097. DOI 10.1016/j.jspi.2009.05.037 | MR 2558352 | Zbl 1183.62149
[10] P. A. Jacobs, P. A. W. Lewis: Discrete time series generated by mixtures. I: Correlational and runs properties. J. R. Stat. Soc., Ser. B. 40 (1978), 94-105. MR 0512147 | Zbl 0374.62087
[11] M. A. Jazi, G. Jones, C.-D. Lai: First-order integer valued AR processes with zero inflated Poisson innovations. J. Time. Ser. Anal. 33 (2012), 954-963. DOI 10.1111/j.1467-9892.2012.00809.x | MR 2991911 | Zbl 1281.62197
[12] M. A. Jazi, G. Jones, C.-D. Lai: Integer valued AR(1) with geometric innovations. J. Iran. Stat. Soc. JIRSS 11 (2012), 173-190. MR 3010343 | Zbl 1278.62136
[13] W. C. Khoo, S. H. Ong, A. Biswas: Modeling time series of counts with a new class of INAR(1) model. Stat. Pap. 58 (2017), 393-416. DOI 10.1007/s00362-015-0704-0 | MR 3649495 | Zbl 1367.60033
[14] C. Li, D. Wang, H. Zhang: First-order mixed integer-valued autoregressive processes with zero-inflated generalized power series innovations. J. Korean Stat. Soc. 44 (2015), 232-246. DOI 10.1016/j.jkss.2014.08.004 | MR 3342635 | Zbl 1328.62527
[15] E. McKenzie: Some simple models for discrete variate time series. J. Water Res. Bull. 21 (1985), 645-650. DOI 10.1111/j.1752-1688.1985.tb05379.x
[16] D. F. Nicholls, B. G. Quinn: Random Coefficient Autoregressive Models: An Introduction. Lecture Notes in Statistics 11, Springer, New York (1982). DOI 10.1007/978-1-4684-6273-9 | MR 0671255 | Zbl 0497.62081
[17] H. Pavlopoulos, D. Karlis: INAR(1) modeling of overdispersed count series with an environmental application. Environmetrics 19 (2008), 369-393. DOI 10.1002/env.883 | MR 2440038
[18] M. Ridout, C. G. B. Demétrio, J. Hinde: Models for count data with many zeros. Proceedings of the 19th International Biometrics Conference, Cape Town, South Africa. 1998, pp. 179-190.
[19] M. M. Ristić, H. S. Bakouch, A. S. Nastić: A new geometric first-order integer-valued autoregressive (NGINAR(1)) process. J. Stat. Plan. Inference. 139 (2009), 2218-2226. DOI 10.1016/j.jspi.2008.10.007 | MR 2507983 | Zbl 1160.62083
[20] M. M. Ristić, A. S. Nastić, H. S. Bakouch: Estimation in an integer-valued autoregressive process with negative binomial marginals (NBINAR(1)). Commun. Stat., Theory Methods 41 (2012), 606-618. DOI 10.1080/03610926.2010.529528 | MR 2874378 | Zbl 1237.62125
[21] S. Schweer, C. H. Weiss: Compound Poisson INAR(1) processes: Stochastic properties and testing for overdispersion. J. Comput. Stat. Data Anal. 77 (2014), 267-284. DOI 10.1016/j.csda.2014.03.005 | MR 3210062
[22] F. W. Steutel, K. van Harn: Discrete analogues of self-decomposability and stability. Ann. Probab. 7 (1979), 893-899. DOI 10.1214/aop/1176994950 | MR 0542141 | Zbl 0418.60020
[23] D. Tjøstheim: Estimation in nonlinear time series models. Stochastic Processes Appl. 21 (1986), 251-273. DOI 10.1016/0304-4149(86)90099-2 | MR 0833954 | Zbl 0598.62109
[24] C. H. Weiss: Thinning operations for modeling time series of count - a survey. AStA, Adv. Stat. Anal. 92 (2008), 319-341. DOI 10.1007/s10182-008-0072-3 | MR 2426093
[25] H. Zhang, D. Wang: Inference for random coefficient INAR(1) process based on frequency domain analysis. Commun. Stat., Simulation Comput. 44 (2015), 1078-1100. DOI 10.1080/03610918.2013.804556 | MR 3264922 | Zbl 1315.62074
[26] Z. Zhao, Y. Hu: Statistical inference for first-order random coefficient integer-valued autoregressive processes. J. Inequal. Appl. 2015 (2015), Paper No. 359, 12 pages. DOI 10.1186/s13660-015-0886-y | MR 3424785 | Zbl 1333.62219
[27] H. Zheng, I. V. Basawa, S. Datta: First-order random coefficient integer-valued autoregressive processes. J. Stat. Plan. Inference 137 (2007), 212-229. DOI 10.1016/j.jspi.2005.12.003 | MR 2292852 | Zbl 1098.62117
[28] A. F. Zuur, E. N. Ieno, N. J. Walker, A. A. Saveliev, G. M. Smith: Mixed Effects Models and Extensions in Ecology with R. Statistics for Biology and Health, Springer, New York (2009). DOI 10.1007/978-0-387-87458-6 | MR 2722501 | Zbl 1284.62024

Affiliations:   Hassan S. Bakouch, Department of Mathematics, Faculty of Science, Tanta University, Tanta, Egypt, e-mail: hassan.bakouch@science.tanta.edu.eg, hnbakouch@yahoo.com; Mehrnaz Mohammadpour, Masumeh Shirozhan, Department of Statistics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran, e-mail: m.mohammadpour@umz.ac.ir, ms.shirozhan@gmail.com


 
PDF available at: