Applications of Mathematics, Vol. 63, No. 2, pp. 195-216, 2018


Reconstruction algorithms for an inverse medium problem

Ji-Chuan Liu

Received April 27, 2017.   First published March 20, 2018.

Abstract:  In this paper, we consider a two-dimensional inverse medium problem from noisy observation data. We propose effective reconstruction algorithms to detect the number, the location and the size of the piecewise constant medium within a body, and then we try to recover the unknown shape of inhomogeneous media. This problem is nonlinear and ill-posed, thus we should consider stable and elegant approaches in order to improve the corresponding approximation. We give several examples to show the viability of our proposed algorithms.
Keywords:  inverse medium problem; Levenberg-Marquardt algorithm; trust-region-reflective algorithm; ill-posed problem
Classification MSC:  65N20, 65N21


References:
[1] H. Ammari, E. Bonnetier, Y. Capdeboscq, M. Tanter, M. Fink: Electrical impedance tomography by elastic deformation. SIAM J. Appl. Math. 68 (2008), 1557-1573. DOI 10.1137/070686408 | MR 2424952 | Zbl 1156.35101
[2] H. Ammari, E. Bossy, J. Garnier, L. H. Nguyen, L. Seppecher: A reconstruction algorithm for ultrasound-modulated diffuse optical tomography. Proc. Am. Math. Soc. 142 (2014), 3221-3236. DOI 10.1090/S0002-9939-2014-12090-9 | MR 3223378 | Zbl 1302.65284
[3] H. Ammari, E. Bossy, J. Garnier, L. Seppecher: Acousto-electromagnetic tomography. SIAM J. Appl. Math. 72 (2012), 1592-1617. DOI 10.1137/120863654 | MR 3022278 | Zbl 1268.78015
[4] H. Ammari, Y. Capdeboscq, F. de Gournay, A. Rozanova-Pierrat, F. Triki: Microwave imaging by elastic deformation. SIAM J. Appl. Math. 71 (2011), 2112-2130. DOI 10.1137/110828241 | MR 2873260 | Zbl 1235.31006
[5] H. Ammari, Y. Capdeboscq, H. Kang, A. Kozhemyak: Mathematical models and reconstruction methods in magneto-acoustic imaging. Eur. J. Appl. Math. 20 (2009), 303-317. DOI 10.1017/S0956792509007888 | MR 2511278 | Zbl 1187.92058
[6] H. Ammari, J. Garnier, L. H. Nguyen, L. Seppecher: Reconstruction of a piecewise smooth absorption coefficient by an acousto-optic process. Commun. Partial Differ. Equations 38 (2013), 1737-1762. DOI 10.1080/03605302.2013.803483 | MR 3169761 | Zbl 06256850
[7] G. Bal, J. C. Schotland: Inverse scattering and acousto-optic imaging. Phys. Rev. Lett. 104 (2010), Article ID 043902. DOI 10.1103/physrevlett.104.043902
[8] G. Bal, G. Uhlmann: Reconstruction of coefficients in scalar second-order elliptic equations from knowledge of their solutions. Commun. Pure Appl. Math. 66 (2013), 1629-1652. DOI 10.1002/cpa.21453 | MR 3084700 | Zbl 1273.35308
[9] G. Bao, T. Triki: Error estimates for the recursive linearization of inverse medium problems. J. Comput. Math. 28 (2010), 725-744. DOI 10.4208/jcm.1003-m0004 | MR 2765913 | Zbl 1240.35574
[10] M. Choulli, F. Triki: New stability estimates for the inverse medium problem with internal data. SIAM J. Math. Anal. 47 (2015), 1778-1799. DOI 10.1137/140988577 | MR 3345935 | Zbl 1335.35294
[11] T. F. Coleman, Y. Li: On the convergence of interior-reflective Newton methods for nonlinear minimization subject to bounds. Math. Program. 67 (1994), 189-224. DOI 10.1007/BF01582221 | MR 1305566 | Zbl 0842.90106
[12] T. Coleman, Y. Li: An interior, trust region approach for nonlinear minimization subject to bounds. SIAM J. Optim. 6 (1996), 418-445. DOI 10.1137/0806023 | MR 1387333 | Zbl 0855.65063
[13] D. Colton, R. Kress: Integral Equation Methods in Scattering Theory. Pure and Applied Mathematics. A Wiley-Interscience Publication. John Wiley & Sons, New York (1983). MR 0700400 | Zbl 0522.35001
[14] D. Colton, R. Kress: Inverse Acoustic and Electromagnetic Scattering Theory. Applied Mathematical Sciences 93, Springer, Berlin (1992). DOI 10.1007/978-3-662-02835-3 | MR 1183732 | Zbl 0760.35053
[15] M. Hanke, W. Rundell: On rational approximation methods for inverse source problems. Inverse Probl. Imaging 5 (2011), 185-202. DOI 10.3934/ipi.2011.5.185 | MR 2773431 | Zbl 1215.35166
[16] V. Isakov: Inverse Problems for Partial Differential Equations. Applied Mathematical Sciences 127, Springer, New York (2006). DOI 10.1007/0-387-32183-7 | MR 2193218 | Zbl 1092.35001
[17] K. Ito, B. Jin, J. Zou: A direct sampling method to an inverse medium scattering problem. Inverse Probl. 28 (2012), Article ID 025003, 11 pages. DOI 10.1088/0266-5611/28/2/025003 | MR 2876854 | Zbl 1241.78025
[18] R. Kress: Linear Integral Equations. Applied Mathematical Sciences 82, Springer, New York (1999). DOI 10.1007/978-1-4612-0559-3 | MR 1723850 | Zbl 0920.45001
[19] K. Levenberg: A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 2 (1944), 164-168. DOI 10.1090/qam/10666 | MR 0010666 | Zbl 0063.03501
[20] D. W. Marquardt: An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11 (1963), 431-441. DOI 10.1137/0111030 | MR 0153071 | Zbl 0112.10505
[21] W. McLean: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000). MR 1742312 | Zbl 0948.35001
[22] J. J. Moré: The Levenberg-Marquardt algorithm: implementation and theory. Numerical Analysis (G. A. Watson et al., eds.). Lecture Notes in Mathematics 630, Springer, Berlin, 1978, pp. 105-116. DOI 10.1007/bfb0067700 | MR 0483445 | Zbl 0372.65022
[23] J. C. Schotland: Direct reconstruction methods in optical tomography. Mathematical Modeling in Biomedical Imaging II (H. Ammari et al., eds.). Lecture Notes in Mathematics 2035, Springer, Berlin, 2012, pp. 1-29. DOI 10.1007/978-3-642-22990-9_1 | MR 3024668 | Zbl 1345.92090
[24] J. Sylvester, G. Uhlmann: A global uniqueness theorem for an inverse boundary value problem. Ann. Math. (2) 125 (1987), 153-169. DOI 10.2307/1971291 | MR 0873380 | Zbl 0625.35078
[25] F. Triki: Uniqueness and stability for the inverse medium problem with internal data. Inverse Probl. 26 (2010), Article ID 095014, 11 pages. DOI 10.1088/0266-5611/26/9/095014 | MR 2679551 | Zbl 1200.35333
[26] T. Widlak, O. Scherzer: Stability in the linearized problem of quantitative elastography. Inverse Probl. 31 (2015), Article ID 035005, 27 pages. DOI 10.1088/0266-5611/31/3/035005 | MR 3319371 | Zbl 1309.92050

Affiliations:   Ji-Chuan Liu, School of Mathematics, China University of Mining and Technology, Xuzhou, Jiangsu 221116, P. R. China, e-mail: liujichuan2003@126.com


 
PDF available at: