Applications of Mathematics, Vol. 63, No. 5, pp. 523-539, 2018
Existence of solutions for nonlinear nonmonotone evolution equations in Banach spaces with anti-periodic boundary conditions
Sahbi Boussandel
Received April 29, 2018. Published online October 5, 2018.
Abstract: The paper is devoted to the study of the existence of solutions for nonlinear nonmonotone evolution equations in Banach spaces involving anti-periodic boundary conditions. Our approach in this study relies on the theory of monotone and maximal monotone operators combined with the Schaefer fixed-point theorem and the monotonicity method. We apply our abstract results in order to solve a diffusion equation of Kirchhoff type involving the Dirichlet $p$-Laplace operator.
Keywords: existence of solutions; anti-periodic; monotone operator; maximal monotone operator; Schaefer fixed-point theorem; monotonicity method; diffusion equation
References: [1] A. R. Aftabizadeh, S. Aizicovici, N. H. Pavel: On a class of second-order anti-periodic boundary value problems. J. Math. Anal. Appl. 171 (1992), 301-320. DOI 10.1016/0022-247X(92)90345-E | MR 1194081 | Zbl 0767.34047
[2] S. Aizicovici, M. McKibben, S. Reich: Anti-periodic solutions to nonmonotone evolution equations with discontinuous nonlinearities. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 43 (2001), 233-251. DOI 10.1016/S0362-546X(99)00192-3 | MR 1790104 | Zbl 0977.34061
[3] S. Aizicovici, N. H. Pavel: Anti-periodic solutions to a class of nonlinear differential equations in Hilbert space. J. Funct. Anal. 99 (1991), 387-408. DOI 10.1016/0022-1236(91)90046-8 | MR 1121619 | Zbl 0743.34067
[4] S. Boussandel: Existence of solutions for evolution equations in Hilbert spaces with anti-periodic boundary conditions and applications. Appl. Math., Praha 63 (2018), 423-437. DOI 10.21136/AM.2018.0233-17 | MR 3842961 | Zbl 06945740
[5] F. E. Browder, W. V. Petryshyn: The solution by iteration of nonlinear functional equations in Banach spaces. Bull. Am. Math. Soc. 72 (1966), 571-575. DOI 10.1090/S0002-9904-1966-11544-6 | MR 0190745 | Zbl 0138.08202
[6] Y. Chen: Anti-periodic solutions for semilinear evolution equations. J. Math. Anal. Appl. 315 (2006), 337-348. DOI 10.1016/j.jmaa.2005.08.001 | MR 2196551 | Zbl 1100.34046
[7] Y. Chen, Y. J. Cho, J. S. Jung: Antiperiodic solutions for semilinear evolution equations. Math. Comput. Modelling 40 (2004), 1123-1130. DOI 10.1016/j.mcm.2003.06.007 | MR 2113840 | Zbl 1074.34058
[8] Y. Chen, J. J. Nieto, D. O'Regan: Anti-periodic solutions for fully nonlinear first-order differential equations. Math. Comput. Modelling 46 (2007), 1183-1190. DOI 10.1016/j.mcm.2006.12.006 | MR 2376702 | Zbl 1142.34313
[9] Y. Chen, J. J. Nieto, D. O'Regan: Anti-periodic solutions for evolution equations associated with maximal monotone mappings. Appl. Math. Lett. 24 (2011), 302-307. DOI 10.1016/j.aml.2010.10.010 | MR 2741034 | Zbl 1215.34069
[10] Y. Chen, D. O'Regan, R. P. Agarwal: Anti-periodic solutions for evolution equations associated with monotone type mappings. Appl. Math. Lett. 23 (2010), 1320-1325. DOI 10.1016/j.aml.2010.06.022 | MR 2718504 | Zbl 1208.34098
[11] Y. Chen, D. O'Regan, R. P. Agarwal: Anti-periodic solutions for semilinear evolution equations in Banach spaces. J. Appl. Math. Comput. 38 (2012), 63-70. DOI 10.1007/s12190-010-0463-y | MR 2886666 | Zbl 1302.34097
[12] Y. Chen, X. Wang, H. Xu: Anti-periodic solutions for semilinear evolution equations. J. Math. Anal. Appl. 273 (2002), 627-636. DOI 10.1016/S0022-247X(02)00288-3 | MR 1932511 | Zbl 1055.34113
[13] P. Drábek, J. Milota: Methods of Nonlinear Analysis. Applications to Differential Equations. Birkhäuser Advanced Texts. Basler Lehrbücher, Birkhäuser, Basel (2007). DOI 10.1007/978-3-0348-0387-8 | MR 2323436 | Zbl 1176.35002
[14] H. Gajewski, K. Gröger, K. Zacharias: Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen. Mathematische Lehrbücher und Monographien, II. Abteilung, Mathematische Monographien 38, Akademie, Berlin, 1974. (In German). DOI 10.1002/mana.19750672207 | MR 0636412 | Zbl 0289.47029
[15] D. Gilbarg, N. S. Trudinger: Elliptic Partial Differential Equations of Second Order. Classics in Mathematic, Springer, Berlin (2001). DOI 10.1007/978-3-642-61798-0 | MR 1814364 | Zbl 1042.35002
[16] A. Haraux: Anti-periodic solutions of some nonlinear evolution equations. Manuscr. Math. 63 (1989), 479-505. DOI 10.1007/BF01171760 | MR 0991267 | Zbl 0684.35010
[17] Y. Liu, X. Liu: New existence results of anti-periodic solutions of nonlinear impulsive functional differential equations. Math. Bohem. 138 (2013), 337-360. MR 3231091 | Zbl 1289.34168
[18] M. Nakao: Existence of an anti-periodic solution for the quasilinear wave equation with viscosity. J. Math. Anal. Appl. 204 (1996), 754-764. DOI 10.1006/jmaa.1996.0465 | MR 1422770 | Zbl 0873.35051
[19] H. Okochi: On the existence of periodic solutions to nonlinear abstract parabolic equations. J. Math. Soc. Japan 40 (1988), 541-553. DOI 10.2969/jmsj/04030541 | MR 0945351 | Zbl 0679.35046
[20] H. Okochi: On the existence of anti-periodic solutions to a nonlinear evolution equation associated with odd subdifferential operators. J. Funct. Anal. 91 (1990), 246-258. DOI 10.1016/0022-1236(90)90143-9 | MR 1058971 | Zbl 0735.35071
[21] H. Okochi: On the existence of anti-periodic solutions to nonlinear parabolic equations in noncylindrical domains. Nonlinear Anal., Theory Methods Appl. 14 (1990), 771-783. DOI 10.1016/0362-546X(90)90105-P | MR 1049120 | Zbl 0715.35091
[22] J. Simon: Compact sets in the space $L^p(0,T;B)$. Ann. Mat. Pura Appl., IV. Ser. 146 (1987), 65-96. DOI 10.1007/BF01762360 | MR 0916688 | Zbl 0629.46031
[23] P. Souplet: An optimal uniqueness condition for the antiperiodic solutions of parabolic evolution equations. C. R. Acad. Sci., Paris, Sér. I 319 (1994), 1037-1041. (In French.) MR 1305673 | Zbl 0809.35036
[24] P. Souplet: Optimal uniqueness condition for the antiperiodic solutions of some nonlinear parabolic equations. Nonlinear Anal., Theory Methods Appl. 32 (1998), 279-286. DOI 10.1016/S0362-546X(97)00477-X | MR 1491628 | Zbl 0892.35078
[25] Y. Tian, J. Henderson: Anti-periodic solutions for a gradient system with resonance via a variational approach. Math. Nachr. 286 (2013), 1537-1547. DOI 10.1002/mana.201200110 | MR 3119700 | Zbl 1283.34016
[26] R. Wu: The existence of $T$-anti-periodic solutions. Appl. Math. Lett. 23 (2010), 984-987. DOI 10.1016/j.aml.2010.04.022 | MR 2659124 | Zbl 1202.34081
[27] R. Wu, F. Cong, Y. Li: Anti-periodic solutions for second-order differential equations. Appl. Math. Lett. 23 (2011), 860-863. DOI 10.1016/j.aml.2010.12.031 | MR 2776149 | Zbl 1223.34064
[28] E. Zeidler: Nonlinear Functional Analysis and Its Applications. II/A: Linear Monotone Operators. Springer, New York (1990). DOI 10.1007/978-1-4612-0985-0 | MR 1033497 | Zbl 0684.47028
[29] L. Zhenhai: Anti-periodic solutions to nonlinear evolution equations. J. Funct. Anal. 258 (2010), 2026-2033. DOI 10.1016/j.jfa.2009.11.018 | MR 2578462 | Zbl 1184.35184
Affiliations: Sahbi Boussandel, Faculty of Sciences of Bizerte, Department of Mathematics, 7021 Jarzouna Bizerte, University of Carthage, Laboratoire EDP et Applications LR03ES04, Bizerte, Tunisia, e-mail: sboussandels@gmail.com