Applications of Mathematics, Vol. 63, No. 2, pp. 167-193, 2018
On generalized conditional cumulative past inaccuracy measure
Amit Ghosh, Chanchal Kundu
Received June 26, 2017. First published April 9, 2018.
Abstract: The notion of cumulative past inaccuracy (CPI) measure has recently been proposed in the literature as a generalization of cumulative past entropy (CPE) in univariate as well as bivariate setup. In this paper, we introduce the notion of CPI of order $\alpha$ and study the proposed measure for conditionally specified models of two components failed at different time instants, called generalized conditional CPI (GCCPI). Several properties, including the effect of monotone transformation and bounds of GCCPI are discussed. Furthermore, we characterize some bivariate distributions under the assumption of conditional proportional reversed hazard rate model. Finally, the role of GCCPI in reliability modeling has also been investigated for a real-life problem.
Keywords: cumulative past inaccuracy; marginal and conditional past lifetimes; conditional proportional reversed hazard rate model; usual stochastic order
References: [1] M. Abbasnejad: Some characterization results based on dynamic survival and failure entropies. Commun. Stat. Appl. Methods 18 (2011), 787-798. DOI 10.5351/ckss.2011.18.6.787
[2] J. Ahmadi, A. Di Crescenzo, M. Longobardi: On dynamic mutual information for bivariate lifetimes. Adv. Appl. Probab. 47 (2015), 1157-1174. DOI 10.1239/aap/1449859804 | MR 3433300 | Zbl 1355.94022
[3] H. Akaike: Information measures and model selection. Bull. Int. Stat. Inst. 50 (1983), 277-290. MR 0820726 | Zbl 0578.62059
[4] S. Baratpour, A. H. Rad: Testing goodness-of-fit for exponential distribution based on cumulative residual entropy. Commun. Stat., Theory Methods 41 (2012), 1387-1396. DOI 10.1080/03610926.2010.542857 | MR 2902993 | Zbl 1319.62095
[5] K. P. Burnham, D. R. Anderson: Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Springer, New York (2002). DOI 10.1007/b97636 | MR 1919620 | Zbl 1005.62007
[6] N. D. Cahill, J. A. Schnabel, J. A. Noble, D. J. Hawkes: Overlap invariance of cumulative residual entropy measures for multimodal image alignment. Medical Imaging 2009 (J. P. W. Pluim, B. M. Dawant, eds.). Proceedings of SPIE 7259, Society of Photo-Optical Instrumentation Engineers, Washington, 2009, Article ID 72590I. DOI 10.1117/12.811585
[7] Y. Choe: Information criterion for minimum cross-entropy model selection. Available at https://arxiv.org/abs/1704.04315 (2017), 32 pages.
[8] A. Di Crescenzo, M. Longobardi: On cumulative entropies. J. Stat. Plann. Inference 139 (2009), 4072-4087. DOI 10.1016/j.jspi.2009.05.038 | MR 2558351 | Zbl 1172.94543
[9] A. Di Crescenzo, M. Longobardi: Stochastic comparisons of cumulative entropies. Stochastic Orders in Reliability and Risk (H. Li, X. Li, eds.). Lecture Notes in Statistics 208, Springer, New York, 2013, pp. 167-182. DOI 10.1007/978-1-4614-6892-9_8 | MR 3156874 | Zbl 1312.62011
[10] A. Di Crescenzo, M. Longobardi: Some properties and applications of cumulative Kullback-Leibler information. Appl. Stoch. Models Bus. Ind. 31 (2015), 875-891. DOI 10.1002/asmb.2116 | MR 3445978
[11] N. Ebrahimi, E. S. Soofi, R. Soyer: Information measures in perspective. Int. Stat. Rev. 78 (2010), 383-412. DOI 10.1111/j.1751-5823.2010.00105.x
[12] D. A. S. Fraser: On information in statistics. Ann. Math. Stat. 36 (1965), 890-896. DOI 10.1214/aoms/1177700061 | MR 0176550 | Zbl 0141.35501
[13] A. Ghosh, C. Kundu: Bivariate extension of (dynamic) cumulative residual and past inaccuracy measures. To appear in Stat. Pap. DOI 10.1007/s00362-017-0917-5
[14] A. Ghosh, C. Kundu: Chernoff distance for conditionally specified models. To appear in Stat. Pap. DOI 10.1007/s00362-016-0804-5
[15] A. Ghosh, C. Kundu: On some dynamic generalized measures of information for conditionally specified models in past life. Statistics 51 (2017), 1398-1418. DOI 10.1080/02331888.2017.1335315 | MR 3734030 | Zbl 06825550
[16] E. J. Gumbel: Bivariate logistic distributions. J. Am. Stat. Assoc. 56 (1961), 335-349. DOI 10.2307/2282259 | MR 0158451 | Zbl 0099.14502
[17] D. Jurafsky, J. H. Martin: Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition. Prentice-Hall, Englewood Cliffs (2009).
[18] S. Kayal, S. M. Sunoj: Generalized Kerridge's inaccuracy measure for conditionally specified models. Commun. Stat., Theory Methods 46 (2017), 8257-8268. DOI 10.1080/03610926.2016.1177083 | MR 3660053 | Zbl 06790749
[19] J. T. Kent: Robust properties of likelihood ratio tests. Biometrika 69 (1982), 19-27. DOI 10.1093/biomet/69.1.19 | MR 0655667 | Zbl 0485.62031
[20] J. T. Kent: Information gain and a general measure of correlation. Biometrika 70 (1983), 163-173. DOI 10.1093/biomet/70.1.163 | MR 0742986 | Zbl 0521.62003
[21] D. F. Kerridge: Inaccuracy and inference. J. R. Stat. Soc., Ser. B 23 (1961), 184-194. MR 0123375 | Zbl 0112.10302
[22] S. Kotz, N. Balakrishnan, N. L. Johnson: Continuous Multivariate Distributions. Vol. 1: Models and Applications. Wiley, New York (2000). DOI 10.1002/0471722065 | MR 1788152 | Zbl 0946.62001
[23] S. Kullback, R. A. Leibler: On information and sufficiency. Ann. Math. Stat. 22 (1951), 79-86. DOI 10.1214/aoms/1177729694 | MR 0039968 | Zbl 0042.38403
[24] C. Kundu, A. Di Crescenzo, M. Longobardi: On cumulative residual (past) inaccuracy for truncated random variables. Metrika 79 (2016), 335-356. DOI 10.1007/s00184-015-0557-5 | MR 3473632 | Zbl 1333.94025
[25] A. Kundu, C. Kundu: Bivariate extension of (dynamic) cumulative past entropy. Commun. Stat., Theory Methods 46 (2017), 4163-4180. DOI 10.1080/03610926.2015.1080838 | MR 3599701 | Zbl 1368.62012
[26] A. Kundu, C. Kundu: Bivariate extension of generalized cumulative past entropy. Commun. Stat., Theory Methods 47 (2018), 1962-1977. DOI 10.1080/03610926.2017.1335412 | MR 3757723
[27] A. Kundu, A. K. Nanda: On study of dynamic survival and cumulative past entropies. Commun. Stat., Theory Methods 45 (2016), 104-122. DOI 10.1080/03610926.2013.824591 | MR 3440373 | Zbl 1338.60055
[28] J. F. Lawless: Statistical Models and Methods for Lifetime Data. Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, New York (1982). MR 0640866 | Zbl 0541.62081
[29] N. U. Nair, G. Asha: Some characterizations based on bivariate reversed mean residual life. ProbStat Forum 1 (2008), 1-14. Zbl 05633231
[30] P. Nath: Inaccuracy and coding theory. Metrika 13 (1968), 123-135. DOI 10.1007/BF02613380 | MR 0238439 | Zbl 0162.51101
[31] J. Navarro, Y. del Aguila, M. Asadi: Some new results on the cumulative residual entropy. J. Stat. Plann. Inference 140 (2010), 310-322. DOI 10.1016/j.jspi.2009.07.015 | MR 2568141 | Zbl 1177.62005
[32] J. Navarro, S. M. Sunoj, N. N. Linu: Characterizations of bivariate models using some dynamic conditional information divergence measures. Commun. Stat., Theory Methods 43 (2014), 1939-1948. DOI 10.1080/03610926.2012.677925 | MR 3196235 | Zbl 06302741
[33] S. Park, I. Kim: On cumulative residual entropy of order statistics. Stat. Probab. Lett. 94 (2014), 170-175. DOI 10.1016/j.spl.2014.07.020 | MR 3257376 | Zbl 1301.62047
[34] S. Park, M. Rao, D. W. Shin: On cumulative residual Kullback-Leibler information. Stat. Probab. Lett. 82 (2012), 2025-2032. DOI 10.1016/j.spl.2012.06.015 | MR 2970308 | Zbl 1312.62012
[35] G. Psarrakos, A. Toomaj: On the generalized cumulative residual entropy with applications in actuarial science. J. Comput. Appl. Math. 309 (2017), 186-199. DOI 10.1016/j.cam.2016.06.037 | MR 3539777 | Zbl 06626242
[36] M. Rao, Y. Chen, B. C. Vemuri, F. Wang: Cumulative residual entropy: a new measure of information. IEEE Trans. Inf. Theory 50 (2004), 1220-1228. DOI 10.1109/TIT.2004.828057 | MR 2094878 | Zbl 1302.94025
[37] A. Rényi: On measures of entropy and information. Proc. 4th Berkeley Symp. Math. Stat. Probab. 1. Univ. California Press, Berkeley, 1961, pp. 547-561. MR 0132570 | Zbl 0106.33001
[38] D. Roy: A characterization of model approach for generating bivariate life distributions using reversed hazard rates. J. Jpn. Stat. Soc. 32 (2002), 239-245. DOI 10.14490/jjss.32.239 | MR 1960368 | Zbl 1047.62050
[39] P. G. Sankaran, D. Kundu: A bivariate Pareto model. Statistics 48 (2014), 241-255. DOI 10.1080/02331888.2012.719521 | MR 3175768 | Zbl 1367.62282
[40] M. Shaked, J. G. Shanthikumar: Stochastic Orders. Springer Series in Statistics, Springer, New York (2007). DOI 10.1007/978-0-387-34675-5 | MR 2265633 | Zbl 1111.62016
[41] C. E. Shannon: A mathematical theory of communication. Bell Syst. Tech. J. 27 (1948), 379-423, 623-656. DOI 10.1002/j.1538-7305.1948.tb01338.x | MR 0026286 | Zbl 1154.94303
[42] J. Shi, Y. Cai, J. Zhu, J. Zhong, F. Wang: SEMG-based hand motion recognition using cumulative residual entropy and extreme learning machine. Medical & Biological Engineering & Computing 51 (2013), 417-427. DOI 10.1007/s11517-012-1010-9
[43] S. M. Sunoj, M. N. Linu: Dynamic cumulative residual Rényi's entropy. Statistics 46 (2012), 41-56. DOI 10.1080/02331888.2010.494730 | MR 2889011 | Zbl 1307.62240
[44] A. Toomaj, S. M. Sunoj, J. Navarro: Some properties of the cumulative residual entropy of coherent and mixed systems. J. Appl. Probab. 54 (2017), 379-393. DOI 10.1017/jpr.2017.6 | MR 3668472
[45] F. Wang, B. C. Vemuri, M. Rao, Y. Chen: A new & robust information theoretic measure and its application to image alignment. Information Processing in Medical Imaging (C. Taylor, J. A. Noble, eds.). Lecture Notes in Computer Science 2732, Springer, Berlin, 2003, pp. 388-400. DOI 10.1007/978-3-540-45087-0_33
Affiliations: Amit Ghosh, Chanchal Kundu (corresponding author), Department of Mathematics, Rajiv Gandhi Institute of Petroleum Technology, Jais 229 304, Uttar Pradesh, India, e-mail: ckundu@rgipt.ac.in, chanchal_kundu@yahoo.com