Applications of Mathematics, Vol. 63, No. 4, pp. 439-454, 2018
A penalty approach for a box constrained variational inequality problem
Zahira Kebaili, Djamel Benterki
Received November 27, 2017. Published online May 22, 2018.
Abstract: We propose a penalty approach for a box constrained variational inequality problem $(\rm BVIP)$. This problem is replaced by a sequence of nonlinear equations containing a penalty term. We show that if the penalty parameter tends to infinity, the solution of this sequence converges to that of $\rm BVIP$ when the function $F$ involved is continuous and strongly monotone and the box $C$ contains the origin. We develop the algorithmic aspect with theoretical arguments properly established. The numerical results tested on some examples are satisfactory and confirm the theoretical approach.
References: [1] A. Auslender: Optimisation. Méthodes numériques. Maitrise de mathématiques et applications fondamentales. Masson, Paris, 1976. (In French.) MR 0441204 | Zbl 0326.90057
[2] Y. Censor, A. N. Iusem, S. A. Zenios: An interior point method with Bregman functions for the variational inequality problem with paramonotone operators. Math. Program. 81 (1998), 373-400. DOI 10.1007/BF01580089 | MR 1617732 | Zbl 0919.90123
[3] F. Facchinei, J.-S. Pang: Finite-Dimensional Variational Inequalities and Complementarity Problems. Vol. I. Springer Series in Operations Research Springer, New York (2003). DOI 10.1007/b97543 | MR 1955648 | Zbl 1062.90001
[4] F. Facchinei, J.-S. Pang: Finite-Dimensional Variational Inequalities and Complementarity Problems. Vol. II. Springer Series in Operations Research Springer, New York (2003). DOI 10.1007/b97544 | MR 1955649 | Zbl 1062.90002
[5] M. Fukushima: Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems. Math. Program., Ser. A 53 (1992), 99-110. DOI 10.1007/BF01585696 | MR 1151767 | Zbl 0756.90081
[6] Z. Hao, Z. Wan, X. Chi, J. Chen: A power penalty method for second-order cone nonlinear complementarity problems. J. Comput. Appl. Math. 290 (2015), 136-149. DOI 10.1016/j.cam.2015.05.007 | MR 3370398 | Zbl 1327.90207
[7] P. T. Harker, J.-S. Pang: Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications. Math. Program., Ser. B 48 (1990), 161-220. DOI 10.1007/BF01582255 | MR 1073707 | Zbl 0734.90098
[8] C. Huang, S. Wang: A power penalty approach to a nonlinear complementarity problem. Oper. Res. Lett. 38 (2010), 72-76. DOI 10.1016/j.orl.2009.09.009 | MR 2565819 | Zbl 1182.90090
[9] C. Huang, S. Wang: A penalty method for a mixed nonlinear complementarity problem. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 75 (2012), 588-597. DOI 10.1016/j.na.2011.08.061 | MR 2847442 | Zbl 1233.65040
[10] C. Kanzow, M. Fukushima: Theoretical and numerical investigation of the D-gap function for box constrained variational inequalities. Math. Program. 83 (1998), 55-87. DOI 10.1007/BF02680550 | MR 1643959 | Zbl 0920.90134
[11] C. Ma, T. Kang: A Jacobian smoothing method for box constrained variational inequality problems. Appl. Math. Comput. 162 (2005), 1397-1429. DOI 10.1016/j.amc.2004.03.018 | MR 2113979 | Zbl 1068.65089
[12] M. A. Noor, Y. Wang, N. Xiu: Some new projection methods for variational inequalities. Appl. Math. Comput. 137 (2003), 423-435. DOI 10.1016/S0096-3003(02)00148-0 | MR 1950108 | Zbl 1031.65078
[13] D.-F. Sun: A projection and contraction method for the nonlinear complementarity problem and its extensions. Chin. J. Numer. Math. Appl. 16 (1994), 73-84. (In English. Chinese original.); translation from Math. Numer. Sin. 16 (1994), 183-194. MR 1459564 | Zbl 0900.65188
[14] J. Tang, S. Liu: A new smoothing Broyden-like method for solving the mixed complementarity problem with a $P_0$-function. Nonlinear Anal., Real World Appl. 11 (2010), 2770-2786. DOI 10.1016/j.nonrwa.2009.10.002 | MR 2661943 | Zbl 1208.90172
[15] Ulji, G.-Q. Chen: New simple smooth merit function for box constrained variational inequalities and damped Newton type method. Appl. Math. Mech., Engl. Ed. 26 (2005), 1083-1092; Appl. Math. Mech. 26 (2005), 988-996. (In Chinese. English, Chinese summary.) DOI 10.1007/BF02466422 | MR 2169264 | Zbl 1144.65309
[16] S. Wang, X. Yang: A power penalty method for linear complementarity problems. Oper. Res. Lett. 36 (2008), 211-214. DOI 10.1016/j.orl.2007.06.006 | MR 2396598 | Zbl 1163.90762
[17] Y. Wang, D. Zhu: An affine scaling interior trust region method via optimal path for solving monotone variational inequality problem with linear constraints. Chin. Ann. Math., Ser. B 29 (2008), 273-290. DOI 10.1007/s11401-007-0082-6 | MR 2421761 | Zbl 1151.49025
Affiliations: Zahira Kebaili, Djamel Benterki, Laboratoire de Mathématiques Fondamentales et Numériques, Département de Mathématiques, Faculté des Sciences, Université Ferhat Abbas Sétif-1, Algérie, e-mail: zehira.kebaili@univ-setif.dz, djbenterki@univ-setif.dz