Applications of Mathematics, Vol. 63, No. 3, pp. 237-257, 2018


On interpolation error on degenerating prismatic elements

Ali Khademi, Sergey Korotov, Jon Eivind Vatne

Received December 19, 2017.   Published online April 17, 2018.

Abstract:  We propose an analogue of the maximum angle condition (commonly used in finite element analysis for triangular and tetrahedral meshes) for the case of prismatic elements. Under this condition, prisms in the meshes may degenerate in certain ways, violating the so-called inscribed ball condition presented by P. G. Ciarlet (1978), but the interpolation error remains of the order $O(h)$ in the $H^1$-norm for sufficiently smooth functions.
Keywords:  prismatic finite element; interpolation error; semiregular family of prismatic partitions
Classification MSC:  65N50, 65N30, 65N12, 65N15


References:
[1] T. Apel: Anisotropic Finite Elements: Local Estimates and Applications. Advances in Numerical Mathematics, Teubner, Leipzig; Technische Univ., Chemnitz (1999). MR 1716824 | Zbl 0934.65121
[2] T. Apel, M. Dobrowolski: Anisotropic interpolation with applications to the finite element method. Computing 47 (1992), 277-293. DOI 10.1007/BF02320197 | MR 1155498 | Zbl 0746.65077
[3] K. E. Atkinson: An Introduction to Numerical Analysis. John Wiley & Sons, New York (1978). MR 0504339 | Zbl 0402.65001
[4] I. Babuška, A. K. Aziz: On the angle condition in the finite element method. SIAM J. Numer. Anal. 13 (1976), 214-226. DOI 10.1137/0713021 | MR 0455462 | Zbl 0324.65046
[5] R. E. Barnhill, J. A. Gregory: Sard kernel theorems on triangular domains with application to finite element error bounds. Numer. Math. 25 (1976), 215-229. DOI 10.1007/BF01399411 | MR 0458000 | Zbl 0304.65076
[6] J. Brandts, S. Korotov, M. Křížek: On the equivalence of regularity criteria for triangular and tetrahedral finite element partitions. Comput. Math. Appl. 55 (2008), 2227-2233. DOI 10.1016/j.camwa.2007.11.010 | MR 2413688 | Zbl 1142.65443
[7] J. Brandts, S. Korotov, M. Křížek: On the equivalence of ball conditions for simplicial finite elements in ${\mathbb R}^d$. Appl. Math. Lett. 22 (2009), 1210-1212. DOI 10.1016/j.aml.2009.01.031 | MR 2532540 | Zbl 1173.52301
[8] J. Brandts, S. Korotov, M. Křížek: Generalization of the Zlámal condition for simplicial finite elements in $\Bbb R^d$. Appl. Math., Praha 56 (2011), 417-424. DOI 10.1007/s10492-011-0024-1 | MR 2833170 | Zbl 1240.65327
[9] P. G. Ciarlet: The Finite Element Method for Elliptic Problems. Studies in Mathematics and Its Applications 4, North-Holland Publishing, Amsterdam (1978). MR 0520174 | Zbl 0383.65058
[10] H. Edelsbrunner: Triangulations and meshes in computational geometry. Acta Numerica 9 (2000), 133-213. DOI 10.1017/s0962492900001331 | MR 1883628 | Zbl 1004.65024
[11] A. Hannukainen, S. Korotov, M. Křížek: The maximum angle condition is not necessary for convergence of the finite element method. Numer. Math. 120 (2012), 79-88. DOI 10.1007/s00211-011-0403-2 | MR 2885598 | Zbl 1255.65196
[12] A. Hannukainen, S. Korotov, M. Křížek: On Synge-type angle condition for $d$-simplices. Appl. Math., Praha 62 (2017), 1-13. DOI 10.21136/AM.2017.0132-16 | MR 3615475 | Zbl 06738478
[13] A. Hannukainen, S. Korotov, T. Vejchodský: Discrete maximum principle for FE solutions of the diffusion-reaction problem on prismatic meshes. J. Comput. Appl. Math. 226 (2009), 275-287. DOI 10.1016/j.cam.2008.08.029 | MR 2501643 | Zbl 1170.65093
[14] P. Jamet: Estimations d'erreur pour des éléments finis droits presque dégénérés. Rev. Franc. Automat. Inform. Rech. Operat. 10 (1976), 43-60. (In French.) DOI 10.1051/m2an/197610r100431 | MR 0455282 | Zbl 0346.65052
[15] K. Kobayashi, T. Tsuchiya: A priori error estimates for Lagrange interpolation on triangles. Appl. Math., Praha 60 (2015), 485-499. DOI 10.1007/s10492-015-0108-4 | MR 3396477 | Zbl 1363.65015
[16] K. Kobayashi, T. Tsuchiya: On the circumradius condition for piecewise linear triangular elements. Japan J. Ind. Appl. Math. 32 (2015), 65-76. DOI 10.1007/s13160-014-0161-5 | MR 3318902 | Zbl 1328.65052
[17] K. Kobayashi, T. Tsuchiya: Extending Babuška-Aziz's theorem to higher-order Lagrange interpolation. Appl. Math., Praha 61 (2016), 121-133. DOI 10.1007/s10492-016-0125-y | MR 3470770 | Zbl 06562150
[18] S. Korotov, Á. Plaza, J. P. Suárez: Longest-edge $n$-section algorithms: properties and open problems. J. Comput. Appl. Math. 293 (2016), 139-146. DOI 10.1016/j.cam.2015.03.046 | MR 3394208 | Zbl 1329.65292
[19] M. Křížek: On semiregular families of triangulations and linear interpolation. Appl. Math., Praha 36 (1991), 223-232. MR 1109126 | Zbl 0728.41003
[20] M. Křížek: On the maximum angle condition for linear tetrahedral elements. SIAM J. Numer. Anal. 29 (1992), 513-520. DOI 10.1137/0729031 | MR 1154279 | Zbl 0755.41003
[21] M. Křížek, P. Neittaanmäki: Mathematical and Numerical Modelling in Electrical Engineering Theory and Application. Kluwer Academic Publishers, Dordrecht (1996). DOI 10.1007/978-94-015-8672-6 | MR 1431889 | Zbl 0859.65128
[22] M. Křížek, V. Preiningerová: Calculation of the 3d temperature field of synchronous and of induction machines by the finite element method. Elektrotechn. obzor 80 (1991), 78-84. (In Czech.)
[23] V. Kučera: A note on necessary and sufficient conditions for convergence of the finite element method. Proc. Int. Conf. Applications of Mathematics, Praha (J. Brandts et al., eds.). Czech Academy of Sciences, Institute of Mathematics, Praha, 2015, pp. 132-139. MR 3700195 | Zbl 1363.65189
[24] V. Kučera: On necessary and sufficient conditions for finite element convergence. Available at https://arxiv.org/abs/1601.02942 (2016), 42 pages.
[25] V. Kučera: Several notes on the circumradius condition. Appl. Math., Praha 61 (2016), 287-298. DOI 10.1007/s10492-016-0132-z | MR 3502112 | Zbl 06587853
[26] S. Mao, Z. Shi: Error estimates of triangular finite elements under a weak angle condition. J. Comput. Appl. Math. 230 (2009), 329-331. DOI 10.1016/j.cam.2008.11.008 | MR 2532314 | Zbl 1168.65063
[27] P. Oswald: Divergence of FEM: Babuška-Aziz triangulations revisited. Appl. Math., Praha 60 (2015), 473-484. DOI 10.1007/s10492-015-0107-5 | MR 3396476 | Zbl 1363.65202
[28] J. L. Synge: The Hypercircle in Mathematical Physics. A Method for the Approximate Solution of Boundary Value Problems. Cambridge University Press, New York (1957). MR 0097605 | Zbl 0079.13802
[29] A. Ženíšek: Convergence of the finite element method for boundary value problems of a system of elliptic equations. Apl. Mat. 14 (1969), 355-376. (In Czech.) MR 0245978 | Zbl 0188.22604
[30] M. Zlámal: On the finite element method. Numer. Math. 12 (1968), 394-409. DOI 10.1007/BF02161362 | MR 0243753 | Zbl 0176.16001

Affiliations:   Ali Khademi, Sergey Korotov, Jon Eivind Vatne, Department of Computing, Mathematics and Physics, Western Norway University of Applied Sciences, P.O. Box 7030, Bergen, Norway, e-mail: Ali.Khademi@hvl.no, akhademi.math@gmail.com, Sergey.Korotov@hvl.no, Jon.Eivind.Vatne@hvl.no


 
PDF available at: