Applications of Mathematics, Vol. 65, No. 4, pp. 447-481, 2020
A phase-field method applied to interface tracking for blood clot formation
Marek Čapek
Received March 10, 2019. Published online July 9, 2020.
Abstract: The high shear rate thrombus formation was only recently recognized as another way of thrombosis. Models proposed in Weller (2008), (2010) take into account this type of thrombosis. This work uses the phase-field method to model these evolving interface problems. A loosely coupled iterative procedure is introduced to solve the coupled system of equations. Convergence behavior on two levels of refinement of perfusion chamber geometry and cylinder geometry is then studied. The perfusion chamber simulations show good agreement with the original results of Weller. The code is implemented in FEM-library deal.ii Alzeta et al. (2018), which enables distribution of computations to large number of processing units. A scalability and numerical performance study of the loosely coupled iterative procedure is performed, combined with several preconditioners for the linear subproblems.
Keywords: thrombus growth; free boundary problem; fluid dynamics; phase field method; finite element method; scalability; high shear rate thrombosis
References: [1] P. A. Aarts, S. A. van den Broek, G. W. Prins, G. D. Kuiken, J. J. Sixma, R. M. Heethaar: Blood platelets are concentrated near the wall and red blood cells, in the center in flowing blood. Arteriosclerosis 8 (1988), 819-824. DOI 10.1161/01.atv.8.6.819
[2] K. Affeld, A. J. Reininger, J. Gadischke, K. Grunert, S. Schmidt, F. Thiele: Fluid mechanics of the stagnation point flow chamber and its platelet deposition. Artif. Organs. 19 (1995), 597-602. DOI 10.1111/j.1525-1594.1995.tb02387.x
[3] G. Alzetta, D. Arndt, W. Bangerth, V. Boddu, B. Brands, D. Davydov, R. Gassmöller, T. Heister, L. Heltai, K. Kormann, M. Kronbichler, M. Maier, J.-P. Pelteret, B. Turcksin, D. Wells: The deal.II library, version 9.0. J. Numer. Math. 26 (2018), 173-183. DOI 10.1515/jnma-2018-0054 | MR 3893339 | Zbl 1410.65363
[4] M. Anand, K. Rajagopal, K. R. Rajagopal: A model incorporating some of the mechanical and biochemical factors underlying clot formation and dissolution in flowing blood. J. Theor. Med. 5 (2003), 183-218. DOI 10.1080/10273660412331317415 | MR 2158290 | Zbl 1078.92017
[5] D. Arndt, W. Bangerth, T. C. Clevenger, D. Davydov, M. Fehling, D. Garcia-Sanchez, G. Harper, T. Heister, L. Heltai, M. Kronbichler, R. M. Kynch, M. Maier, J.-P. Pelteret, B. Turcksin, D. Wells: The deal.II library, version 9.1. J. Numer. Math. 27 (2019), 203-213. DOI 10.1515/jnma-2019-0064 | MR 4078181 | Zbl 07181764
[6] S Balay, W. D. Gropp, L. C. McInnes, B. F. Smith: PETSc: Portable, Extensible Toolkit for Scientific Computation - Toolkit for Advanced Computation. Available at http://www.mcs.anl.gov/petsc (2018). SW 4012
[7] W. Bangerth, R. Hartmann, G. Kanschat: deal.ii - a general-purpose object-oriented finite element library. ACM Trans. Math. Softw. 33 (2007), Article ID 24, 27 pages. DOI 10.1145/1268776.1268779 | MR 2404402 | Zbl 1365.65248
[8] G. Barlas: Multicore and GPU Programming: An Integrated Approach. Morgan Kaufmann Publishers, San Francisco (2015).
[9] T. Bodnár, A. Fasano, A. Sequeira: Mathematical models for blood coagulation. Fluid-Structure Interaction and Biomedical Applications (T. Bodnár et al., eds.). Advances in Mathematical Fluid Mechanics. Birkhäuser/Springer, Basel, 2014, 483-569. DOI 10.1007/978-3-0348-0822-4_7 | MR 3329023 | Zbl 1351.76320
[10] C. Burstedde, L. C. Wilcox, O. Ghattas: p4est: scalable algorithms for parallel adaptive mesh refinement on forests of octrees. SIAM J. Sci. Comput. 33 (2011), 1103-1133. DOI 10.1137/100791634 | MR 2800566 | Zbl 1230.65106
[11] L. D. C. Casa, D. H. Deaton, D. N. Ku: Role of high shear rate in thrombosis. J. Vasc. Surg. 61 (2015), 1068-1080 (2015). DOI 10.1016/j.jvs.2014.12.050
[12] L. D. C. Casa, D N. Ku: Thrombus formation at high shear rates. Ann. Rev. Biomed. Eng. 19 (2017), 415-433. DOI 10.1146/annurev-bioeng-071516-044539
[13] R. W. Colman, V. J. Marder, A. W. Clowes, J. N. George, S. Z. Goldhaber: Hemostasis and Thrombosis: Basic Principles and Clinical Practice. Lippincott Williams & Wilkins, Philadelphia (2005).
[14] A. Fasano, A. Sequeira: Hemorheology and hemodynamics. Hemomath. Modeling, Simulation and Applications 18. Springer, Cham, 2017, 1-77. DOI 10.1007/978-3-319-60513-5_1
[15] S. Gross, A. Reusken: Numerical Methods for Two-Phase Incompressible Flows. Springer Series in Computational Mathematics 40. Springer, Berlin (2011). DOI 10.1007/978-3-642-19686-7 | MR 2799400 | Zbl 1222.76002
[16] J. L. Guermond, P. Minev, J. Shen: An overview of projection methods for incompressible flows. Comput. Methods Appl. Mech. Eng. 195 (2006), 6011-6045. DOI 10.1016/j.cma.2005.10.010 | MR 2250931 | Zbl 1122.76072
[17] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda, R. B. Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps, A. G. Salinger, H. Thornquist, R. S. Tuminaro, J. M. Willenbring, A. Williams, K. S. Stanley: An overview of the Trilinos project. ACM Trans. Math. Softw. 31 (2005), 397-423. DOI 10.1145/1089014.1089021 | MR 2266800 | Zbl 1136.65354
[18] V. Huck et al.: A2 - Research. Available at http://www.shenc.de/A2-Huck-res.htm.
[19] G. Karypis, V. Kumar: MeTis: Unstructured Graph Partitioning and Sparse Matrix Ordering System, Version 4.0. Available at http://www.cs.umn.edu/~metis, 2009. SW 4089
[20] N. S. Key, M. Makris, D. Lillicrap, eds.: Practical Hemostasis and Thrombosis. John Wiley, Chichester (2017). DOI 10.1002/9781118344729
[21] D. Kuzmin: Introduction to Computational Fluid Dynamics. Available at http://www.mathematik.uni-dortmund.de/~kuzmin/cfdintro/lecture8.pdf, 2010.
[22] X. Li, J. Lowengrub, A. Rätz, A. Voigt: Solving PDEs in complex geometries: a diffuse domain approach. Commun. Math. Sci. 7 (2009), 81-107. DOI 10.4310/CMS.2009.v7.n1.a4 | MR 2512834 | Zbl 1178.35027
[23] A. Mohan: Modeling the Growth and Dissolution of Clots in Flowing Blood. PhD Thesis, Texas A&M University, College Station (2005).
[24] S. Osher, R. Fedkiw: Level Set Methods and Dynamic Implicit Surfaces. Applied Mathematical Sciences 153. Springer, New York (2003). DOI 10.1007/b98879 | MR 1939127 | Zbl 1026.76001
[25] J. Reinders: Intel Threading Building Blocks: Outfitting C++ for Multi-Core Processor Parallelism. O'Reilly, Sebastopol (2007).
[26] K. S. Sakariassen, L. Orning, V. T. Turitto: The impact of blood shear rate on arterial thrombus formation. Future Sci. OA 1 (2015), Article ID FSO30. DOI 10.4155/fso.15.28
[27] J. A. Sethian: Level Set Methods and Fast Marching Methods. Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge Monographs on Applied and Computational Mathematics 3. Cambridge University Press, Cambridge (1999). MR 1700751 | Zbl 0973.76003
[28] A. A. Tokarev, A. A. Butylin, F. I. Ataullakhanov: Platelet adhesion from shear blood flow is controlled by near-wall rebounding collisions with erythrocytes. Biophys. J. 100 (2011), 799-808. DOI 10.1016/j.bpj.2010.12.3740
[29] A. Tokarev, I. Sirakov, G. Panasenko, V. Volpert, E. Shnol, A. Butylin, F. Ataullakhanov: Continuous mathematical model of platelet thrombus formation in blood flow. Russ. J. Numer. Anal. Math. Model. 27 (2012), 191-212. DOI 10.1515/rnam-2012-0011 | MR 2910582 | Zbl 06032989
[30] S. Turek: Efficient Solvers for Incompressible Flow Problems. An Algorithmic and Computational Approach. Lecture Notes in Computational Science and Engineering 6. Springer, Berlin (1999). DOI 10.1007/978-3-642-58393-3 | MR 1691839 | Zbl 0930.76002
[31] F. Weller: Modeling, Analysis, and Simulation of Thrombosis and Hemostasis: PhD Thesis. Ruprecht-Karls-Universität, Heidelberg (2008). DOI 10.11588/heidok.00008558
[32] F. F. Weller: Platelet deposition in non-parallel flow: influence of shear stress and changes in surface reactivity. J. Math. Biol. 57 (2008), 333-359. DOI 10.1007/s00285-008-0163-5 | MR 2411224 | Zbl 1149.35332
[33] F. F. Weller: A free boundary problem modeling thrombus growth. Model development and numerical simulation using the level set method. J. Math. Biol. 61 (2010), 805-818. DOI 10.1007/s00285-009-0324-1 | MR 2726451 | Zbl 1205.92010
[34] Z. Xu, N. Chen, S. C. Shadden, J. E. Marsden, M. M. Kamocka, E. D. Rosen, M. Alber: Study of blood flow impact on growth of thrombi using a multiscale model. Soft Matter 5 (2009), 769-779. DOI 10.1039/B812429A
[35] K. E. Zlobina, G. Th. Guria: Platelet activation risk index as a prognostic thrombosis indicator. Scientific Reports 6 (2016), Article ID 30508. DOI 10.1038/srep30508
Affiliations: Marek Čapek, Mathematical Institute, Charles University, Sokolovská 83, 186 75 Praha 8, Czech Republic, e-mail: marek.capek@post.cz