Applications of Mathematics, first online, pp. 1-21

Lanczos-like algorithm for the time-ordered exponential: The $\ast$-inverse problem

Pierre-Louis Giscard, Stefano Pozza

Received December 5, 2019.   Published online September 24, 2020.

Abstract:  The time-ordered exponential of a time-dependent matrix $\mathsf{A}(t)$ is defined as the function of $\mathsf{A}(t)$ that solves the first-order system of coupled linear differential equations with non-constant coefficients encoded in $\mathsf{A}(t)$. The authors have recently proposed the first Lanczos-like algorithm capable of evaluating this function. This algorithm relies on inverses of time-dependent functions with respect to a non-commutative convolution-like product, denoted by $\ast$. Yet, the existence of such inverses, crucial to avoid algorithmic breakdowns, still needed to be proved. Here we constructively prove that $\ast$-inverses exist for all non-identically null, smooth, separable functions of two variables. As a corollary, we partially solve the Green's function inverse problem which, given a distribution $G$, asks for the differential operator whose fundamental solution is $G$. Our results are abundantly illustrated by examples.
Keywords:  time-ordering; matrix differential equation; time-ordered exponential; Lanczos algorithm; fundamental solution
Classification MSC:  35A24, 47B36, 65F10, 65D15
DOI:  10.21136/AM.2020.0342-19

PDF available at:  Springer   Institute of Mathematics CAS

[1] P. Benner, A. Cohen, M. Ohlberger, K. Willcox (eds.): Model Reduction and Approximation: Theory and Algorithms. Computational Science & Engineering 15. SIAM, Philadelphia (2017). DOI 10.1137/1.9781611974829 | MR 3672144 | Zbl 1378.65010
[2] S. Blanes: High order structure preserving explicit methods for solving linear-quadratic optimal control problems. Numer. Algorithms 69 (2015), 271-290. DOI 10.1007/s11075-014-9894-0 | MR 3350382 | Zbl 1317.65144
[3] A. Bouhamidi: Pseudo-differential operator associated to the radial basis functions under tension. ESAIM, Proc. 20 (2007), 72-82. DOI 10.1051/proc:072007 | MR 2402761 | Zbl 1359.35233
[4] M. J. Corless, A. E. Frazho: Linear Systems and Control: An Operator Perspective. Pure and Applied Mathematics, Marcel Dekker 254. Marcel Dekker, New York (2003). DOI 10.1201/9780203911372 | Zbl 1050.93001
[5] G. E. Fasshauer, Q. Ye: Reproducing kernels of Sobolev spaces via a Green kernel approach with differential operators and boundary operators. Adv. Comput. Math. 38 (2013), 891-921. DOI 10.1007/s10444-011-9264-6 | MR 3044643 | Zbl 1267.41018
[6] P.-L. Giscard: On the solutions of linear Volterra equations of the second kind with sum kernels. To appear in J. Integral Equations Appl. Available at (2020), 25 pages.
[7] P.-L. Giscard, K. Lui, S. J. Thwaite, D. Jaksch: An exact formulation of the time-ordered exponential using path-sums. J. Math. Phys. 56 (2015), Article ID 053503, 18 pages. DOI 10.1063/1.4920925 | MR 3391006 | Zbl 1316.15010
[8] P.-L. Giscard, S. Pozza: Lanczos-like method for the time-ordered exponential. Available at (2019), 26 pages.
[9] P.-L. Giscard, S. Pozza: Tridiagonalization of systems of coupled linear differential equations with variable coefficients by a Lanczos-like method. Available at (2020), 23 pages.
[10] G. H. Golub, G. Meurant: Matrices, moments and quadrature. Numerical Analysis 1993. Pitman Research Notes in Mathematics Series 303. Longman Scientific & Technical, Harlow, 1994, 105-156. MR 1267758 | Zbl 0795.65019
[11] G. H. Golub, G. Meurant: Matrices, Moments and Quadrature With Applications. Princeton Series in Applied Mathematics 30. Princeton University Press, Princeton (2010). DOI 10.1515/9781400833887 | MR 2582949 | Zbl 1217.65056
[12] G. Gripenberg, S.-O. Londen, O. Staffans: Volterra Integral and Functional Equations. Encyclopedia of Mathematics and Its Applications 34. Cambridge University Press, Cambridge (1990). DOI 10.1017/CBO9780511662805 | MR 1050319 | Zbl 0695.45002
[13] H. Kwakernaak, R. Sivan: Linear Optimal Control Systems. Wiley-Interscience, New York (1972). MR 0406607 | Zbl 0276.93001
[14] J. Liesen, Z. Strakoš: Krylov Subspace Methods: Principles and Analysis. Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2013). DOI 10.1093/acprof:oso/9780199655410.001.0001 | MR 3024841 | Zbl 1307.65001
[15] P. Linz: Analytical and Numerical Methods for Volterra Equations. SIAM Studies in Applied Mathematics 7. SIAM, Philadelphia (1985). DOI 10.1137/1.9781611970852 | MR 0796318 | Zbl 0566.65094
[16] M. Mehring, V. A. Weberruss: Object-Oriented Magnetic Resonance: Classes and Objects, Calculations and Computations. Academic Press, London (2012). DOI 10.1016/C2009-0-21093-2
[17] A. D. Polyanin, A. V. Manzhirov: Handbook of Integral Equations. Chapman & Hall/CRC Press, Boca Raton (2008). DOI 10.1201/9781420010558 | MR 2404728 | Zbl 1154.45001
[18] L. Razdolsky: Integral Volterra equations. Probability Based High Temperature Engineering. Springer, Cham, 2017, 55-100. DOI 10.1007/978-3-319-41909-1_2
[19] W. T. Reid: Riccati matrix differential equations and non-oscillation criteria for associated linear differential systems. Pac. J. Math. 13 (1963), 665-685. DOI 10.2140/pjm.1963.13.665 | MR 0155049 | Zbl 0119.07401
[20] Á. Rivas, S. F. Huelga: Open Quantum Systems: An Introduction. SpringerBriefs in Physics. Springer, Berlin (2012). DOI 10.1007/978-3-642-23354-8 | MR 2848650 | Zbl 1246.81006
[21] Y. Saad: Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia (2003). DOI 10.1137/1.9780898718003 | MR 1990645 | Zbl 1031.65046
[22] L. Schwartz: Théorie des distributions. Publications de l'Institut de Mathématique de l'Université de Strasbourg IX-X. Hermann, Paris (1966). (In French.) MR 0209834 | Zbl 0149.09501
[23] M. Sezer: Taylor polynomial solutions of Volterra integral equations. Int. J. Math. Educ. Sci. Technol. 25 (1994), 625-633. DOI 10.1080/0020739940250501 | MR 1295324 | Zbl 0823.45005
[24] F. G. Tricomi: Integral Equations. Dover Publications, New York (1985). MR 0809184 | Zbl 0078.09404

Affiliations:   Pierre-Louis Giscard, University Littoral Côte d'Opale, UR 2597, LMPA, Laboratoire de Mathématiques Pures et Appliquées Joseph Liouville, F-62100 Calais, France, e-mail:; Stefano Pozza, Faculty of Mathematics and Physics, Charles University, Sokolovská 83, 186 75 Praha 8, Czech Republic, e-mail:

PDF available at: