Applications of Mathematics, Vol. 65, No. 5, pp. 619-643, 2020


Interval matrices with Monge property

Martin Černý

Received December 23, 2019.   Published online September 4, 2020.

Abstract:  We generalize the Monge property of real matrices for interval matrices. We define two classes of interval matrices with the Monge property - in a strong and a weak sense. We study the fundamental properties of both types. We show several different characterizations of the strong Monge property. For the weak Monge property, we give a polynomial description and several sufficient and necessary conditions. For both classes, we study closure properties. We further propose a generalization of an algorithm by Deineko and Filonenko which for a given matrix returns row and column permutations such that the permuted matrix is Monge if the permutations exist.
Keywords:  Monge matrix; interval matrix; interval analysis; linear programming
Classification MSC:  65G99, 90C05
DOI:  10.21136/AM.2020.0370-19

PDF available at:  Springer   Institute of Mathematics CAS

References:
[1] G. Alefeld, G. Mayer: Interval analysis: Theory and applications. J. Comput. Appl. Math. 121 (2000), 421-464. DOI 10.1016/S0377-0427(00)00342-3 | MR 1780057 | Zbl 0995.65056
[2] R. E. Burkard, B. Klinz, R. Rudolf: Perspectives of Monge properties in optimization. Discrete Appl. Math. 70 (1996), 95-161. DOI 10.1016/0166-218X(95)00103-X | MR 1403225 | Zbl 0856.90091
[3] K. Cechlárová, P. Szabó: On the Monge property of matrices. Discrete Math. 81 (1990), 123-128. DOI 10.1016/0012-365X(90)90143-6 | MR 1054969 | Zbl 0726.06010
[4] V. G. Deineko, V. L. Filonenko: On the reconstruction of specially structured matrices. Aktualnyje problemy EVM i programmirovanije. Dnepropetrovsk, DGU (1979). (In Russian.)
[5] J. Garloff, M. Adm, J. Titi: A survey of classes of matrices possessing the interval property and related properties. Reliab. Comput. 22 (2016), 1-14. MR 3451674
[6] R. Greenlaw, H. J. Hoover, W. L. Ruzzo: Limits to Parallel Computation: $P$-Completeness Theory. Oxford University Press, Oxford (1995). MR 1333600 | Zbl 0829.68068
[7] M. Hladík: An overview of polynomially computable characteristics of special interval matrices. Beyond Traditional Probabilistic Data Processing Techniques: Interval, Fuzzy etc. Methods and Their Applications. Studies in Computational Intelligence 835. Springer, Cham, 2020, 295-310. DOI 10.1007/978-3-030-31041-7_16
[8] G. Monge: Mémoire sur la théorie des déblais et des remblais. De l'Imprimerie Royale, Paris (1781). (In French.)
[9] R. E. Tarjan: Edge-disjoint spanning trees and depth-first search. Acta Inf. 6 (1976), 171-185. DOI 10.1007/BF00268499 | MR 0424598 | Zbl 0307.05104

Affiliations:   Martin Černý, Charles University, Faculty of Mathematics and Physics, Department of Applied Mathematics, Malostranské nám. 2/25, 118 00 Praha 1, Czech Republic, e-mail: cerny@kam.mff.cuni.cz


 
PDF available at: