Applications of Mathematics, Vol. 67, No. 4, pp. 485-507, 2022


Remarks on the a priori bound for the vorticity of the axisymmetric Navier-Stokes equations

Zujin Zhang, Chenxuan Tong

Received November 30, 2020.   Published online November 22, 2021.

Abstract:  We study the axisymmetric Navier-Stokes equations. In 2010, Loftus-Zhang used a refined test function and re-scaling scheme, and showed that $$ |\omega^r(x,t)|+|\omega^z(r,t)|\leq\frac{C}{r^{10}},\quad0<r\leq\frac12. $$ By employing the dimension reduction technique by Lei-Navas-Zhang, and analyzing $\omega^r$, $\omega^z$ and $\omega^\theta/r$ on different hollow cylinders, we are able to improve it and obtain $$ |\omega^r(x,t)|+|\omega^z(r,t)|\leq\frac{C|{\rm ln} r|}{r^{17/2}},\quad0<r\leq\frac12. $$
Keywords:  axisymmetric Navier-Stokes equations; weighted a priori bounds
Classification MSC:  35B65, 35Q35, 76D03


References:
[1] D. Chae, J. Lee: On the regularity of the axisymmetric solutions of the Navier-Stokes equations. Math. Z. 239 (2002), 645-671. DOI 10.1007/s002090100317 | MR 1902055 | Zbl 0992.35068
[2] H. Chen, D. Fang, T. Zhang: Regularity of 3D axisymmetric Navier-Stokes equations. Discrete Contin. Dyn. Syst. 37 (2017), 1923-1939. DOI 10.3934/dcds.2017081 | MR 3640581 | Zbl 1364.35114
[3] Q. Chen, Z. Zhang: Regularity criterion of axisymmetric weak solutions to the 3D Navier-Stokes equations. J. Math. Anal. Appl. 331 (2007), 1384-1395. DOI 10.1016/j.jmaa.2006.09.069 | MR 2313720 | Zbl 1151.35067
[4] S. Gala: On the regularity criterion of axisymmetric weak solutions to the 3D Navier-Stokes equations. Nonlinear Anal., Theory Methods Appl., Ser. A 74 (2011), 775-782. DOI 10.1016/j.na.2010.09.026 | MR 2738629 | Zbl 1205.35194
[5] T. Gallay, V. Šverák: Remarks on the Cauchy problem for the axisymmetric Navier-Stokes equations. Confluentes Math. 7 (2015), 67-92. DOI 10.5802/cml.25 | MR 4059266 | Zbl 1356.35159
[6] T. Y. Hou, C. Li: Global well-posedness of the viscous Boussinesq equations. Discrete Contin. Dyn. Syst. 12 (2005), 1-12. DOI 10.3934/dcds.2005.12.1 | MR 2121245 | Zbl 1274.76185
[7] O. Kreml, M. Pokorný: A regularity criterion for the angular velocity component in axisymmetric Navier-Stokes equations. Electron J. Differ. Equ. 2007 (2007), Article ID 08, 10 pages. MR 2278422 | Zbl 1387.35456
[8] A. Kubica, M. Pokorný, W. Zajączkowski: Remarks on regularity criteria for axially symmetric weak solutions to the Navier-Stokes equations. Math. Methods Appl. Sci. 35 (2012), 360-371. DOI 10.1002/mma.1586 | MR 2876817 | Zbl 1236.35107
[9] O. A. Ladyzhenskaya: Unique global solvability of the three-dimensional Cauchy problem for the Navier-Stokes equations in the presence of axial symmetry. Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova 7 (1968), 155-177. (In Russian.) MR 0241833 | Zbl 0195.10603
[10] Z. Lei, E. A. Navas, Q. S. Zhang: A priori bound on the velocity in axially symmetric Navier-Stokes equations. Commun. Math. Phys. 341 (2016), 289-307. DOI 10.1007/s00220-015-2496-4 | MR 3439228 | Zbl 1341.35102
[11] Z. Lei, Q. S. Zhang: A Liouville theorem for the axially-symmetric Navier-Stokes equations. J. Funct. Anal. 261 (2011), 2323-2345. DOI 10.1016/j.jfa.2011.06.016 | MR 2824580 | Zbl 1244.35105
[12] Z. Lei, Q. S. Zhang: Criticality of the axially symmetric Navier-Stokes equations. Pac. J. Math. 289 (2017), 169-187. DOI 10.2140/pjm.2017.289.169 | MR 3652459 | Zbl 06722850
[13] S. Leonardi, J. Málek, J. Nečas, M. Pokorný: On axially symmetric flows in $\mathbb R^3$. Z. Anal. Anwend. 18 (1999), 639-649. DOI 10.4171/ZAA/903 | MR 1718156 | Zbl 0943.35066
[14] J. B. Loftus, Q. S. Zhang: A priori bounds for the vorticity of axially symmetric solutions to the Navier-Stokes equations. Adv. Differ. Equ. 15 (2010), 531-560. MR 2643234 | Zbl 1195.35240
[15] J. Neustupa, M. Pokorný: Axisymmetric flow of Navier-Stokes fluid in the whole space with non-zero angular velocity component. Math. Bohem. 126 (2001), 469-481. DOI 10.21136/MB.2001.134015 | MR 1844284 | Zbl 0981.35046
[16] M. Pokorný: A regularity criterion for the angular velocity component in the case of axisymmetric Navier-Stokes equations. Elliptic and Parabolic Problems. World Scientific, Singapore (2002), 233-242. DOI 10.1142/9789812777201_0022 | MR 1937543 | Zbl 1033.35085
[17] J. Rencławowicz, W. M. Zajączkowski: On some regularity criteria for axisymmetric Navier-Stokes equations. J. Math. Fluid Mech. 21 (2019), Article ID 51, 14 pages. DOI 10.1007/s00021-019-0447-0 | MR 4010661 | Zbl 1448.76055
[18] M. R. Uhkovskii, V. I. Iudovich: Axially symmetric flows of ideal and viscous fluids filling the whole space. J. Appl. Math. Mech. 32 (1968), 52-62. DOI 10.1016/0021-8928(68)90147-0 | MR 0239293 | Zbl 0172.53405
[19] D. Wei: Regularity criterion to the axially symmetric Navier-Stokes equations. J. Math. Anal. Appl. 435 (2016), 402-413. DOI 10.1016/j.jmaa.2015.09.088 | MR 3423404 | Zbl 1330.35298
[20] P. Zhang, T. Zhang: Global axisymmetric solutions to three-dimensional Navier-Stokes system. Int. Math. Res. Not. 2014 (2014), 610-642. DOI 10.1093/imrn/rns232 | MR 3163561 | Zbl 07357636
[21] Z. Zhang: Remarks on regularity criteria for the Navier-Stokes equations with axisymmetric data. Ann. Pol. Math. 117 (2016), 181-196. DOI 10.4064/ap3856-3-2016 | MR 3539076 | Zbl 1359.35163
[22] Z. Zhang: On weighted regularity criteria for the axisymmetric Navier-Stokes equations. Appl. Math. Comput. 296 (2017), 18-22. DOI 10.1016/j.amc.2016.10.001 | MR 3572774 | Zbl 1411.35222
[23] Z. Zhang: A pointwise regularity criterion for axisymmetric Navier-Stokes system. J. Math. Anal. Appl. 461 (2018), 1-6. DOI 10.1016/j.jmaa.2017.12.069 | MR 3759525 | Zbl 1390.35239
[24] Z. Zhang: Several new regularity criteria for the axisymmetric Navier-Stokes equations with swirl. Comput. Math. Appl. 76 (2018), 1420-1426. DOI 10.1016/j.camwa.2018.06.035 | MR 3850659 | Zbl 1434.35072
[25] Z. Zhang: New a priori estimates for the axisymmetric Navier-Stokes system. Appl. Math. Lett. 92 (2019), 139-143. DOI 10.1016/j.aml.2019.01.022 | MR 3903956 | Zbl 1417.35098
[26] Z. Zhang, X. Ouyang, X. Yang: Refined a priori estimates for the axisymmetric Navier-Stokes equations. J. Appl. Anal. Comput. 7 (2017), 554-558. DOI 10.11948/2017034 | MR 3602437 | Zbl 07309521

Affiliations:   Zujin Zhang (corresponding author), Chenxuan Tong, School of Mathematics and Computer Sciences, Gannan Normal University, Ganzhou 341000, Jiangxi, P. R. China, e-mail: zhangzujin361@163.com, 1342745285@qq.com


 
PDF available at: