Applications of Mathematics, Vol. 68, No. 4, pp. 405-424, 2023
Solution of 3D contact shape optimization problems with Coulomb friction based on TFETI
Alexandros Markopoulos, Petr Beremlijski, Oldřich Vlach, Marie Sadowská
Received June 2, 2022. Published online December 6, 2022.
Abstract: The present paper deals with the numerical solution of 3D shape optimization problems in frictional contact mechanics. Mathematical modelling of the Coulomb friction problem leads to an implicit variational inequality which can be written as a fixed point problem. Furthermore, it is known that the discretized problem is uniquely solvable for small coefficients of friction. Since the considered problem is nonsmooth, we exploit the generalized Mordukhovich's differential calculus to compute the needed subgradient information. The state problem is solved using successive approximations combined with the Total FETI (TFETI) method. The latter is based on tearing the bodies into "floating" subdomains, discretization by finite elements, and solving the resulting quadratic programming problem by augmented Lagrangians. The presented numerical experiments demonstrate our method's power and the importance of the proper modelling of 3D frictional contact problems. The state problem solution and the sensitivity analysis process were implemented in parallel.
References: [1] P. Beremlijski, J. Haslinger, M. Kočvara, R. Kučera, J. V. Outrata: Shape optimization in three-dimensional contact problems with Coulomb friction. SIAM J. Optim. 20 (2009), 416-444. DOI 10.1137/080714427 | MR 2507130 | Zbl 1186.49028
[2] P. Beremlijski, J. Haslinger, M. Kočvara, J. Outrata: Shape optimization in contact problems with Coulomb friction. SIAM J. Optim. 13 (2002), 561-587. DOI 10.1137/S1052623401395061 | MR 1951035 | Zbl 1025.49026
[3] P. Beremlijski, J. Haslinger, J. V. Outrata, R. Pathó: Shape optimization in contact problems with Coulomb friction and a solution-dependent friction coefficient. SIAM J. Control Optim. 52 (2014), 3371-3400. DOI 10.1137/130948070 | MR 3272620 | Zbl 1307.49040
[4] P. Beremlijski, A. Markopoulos: On solution of 3D contact shape optimization problems with Coulomb friction based on domain decomposition. EngOpt 2014 4th International Conference on Engineering Optimization. IDMEC - Instituto de Engenharia Mecanica, Lisboa (2015), 465-470. DOI 10.1201/b17488-82
[5] F. H. Clarke: Optimization and Nonsmooth Analysis. Canadian Mathematical Society Series of Monographs and Advanced Texts. John Wiley & Sons, New York (1983). DOI 10.1137/1.9781611971309 | MR 0709590 | Zbl 0582.49001
[6] Z. Dostál, T. Kozubek, A. Markopoulos, T. Brzobohatý, V. Vondrák, P. Horyl: Theoretically supported scalable TFETI algorithm for the solution of multibody 3D contact problems with friction. Comput. Methods Appl. Mech. Eng. 205-208 (2012), 110-120. DOI 10.1016/j.cma.2011.02.015 | MR 2872030 | Zbl 1239.74064
[7] Z. Dostál, T. Kozubek, M. Sadowská, V. Vondrák: Scalable Algorithms for Contact Problems. Advances in Mechanics and Mathematics 36. Springer, New York (2016). DOI 10.1007/978-1-4939-6834-3 | MR 3586594 | Zbl 1383.74002
[8] C. Farhat, F.-X. Roux: An unconventional domain decomposition method for an efficient parallel solution of large-scale finite element systems. SIAM J. Sci. Stat. Comput. 13 (1992), 379-396. DOI 10.1137/0913020 | MR 1145192 | Zbl 0746.65086
[9] J. Haslinger, T. Kozubek, R. Kučera, G. Peichl: Projected Schur complement method for solving non-symmetric systems arising from a smooth fictitious domain approach. Numer. Linear Algebra Appl. 14 (2007), 713-739. DOI 10.1002/nla.550 | MR 2361187 | Zbl 1199.65102
[10] R. Kučera: Minimizing quadratic functions with separable quadratic constraints. Optim. Methods Softw. 22 (2007), 453-467. DOI 10.1080/10556780600609246 | MR 2319243 | Zbl 1136.65062
[11] R. Kučera, K. Motyčková, A. Markopoulos, J. Haslinger: On the inexact symmetrized globally convergent semi-smooth Newton method for 3D contact problems with Tresca friction: The R-linear convergence rate. Optim. Methods Softw. 35 (2020), 65-86. DOI 10.1080/10556788.2018.1556659 | MR 4032941 | Zbl 07136209
[12] B. S. Mordukhovich: Variational Analysis and Generalized Differentiation. I. Basic Theory. Grundlehren der Mathematischen Wissenschaften 330. Springer, Berlin (2006). DOI 10.1007/3-540-31247-1 | MR 2191744 | Zbl 1100.49002
[13] B. S. Mordukhovich: Variational Analysis and Generalized Differentiation. II. Applications. Grundlehren der Mathematischen Wissenschaften 331. Springer, Berlin (2006). DOI 10.1007/3-540-31246-3 | MR 2191745 | Zbl 1100.49002
[14] B. S. Mordukhovich: Variational Analysis and Applications. Springer Monographs in Mathematics. Springer, Cham (2018). DOI 10.1007/978-3-319-92775-6 | MR 3823783 | Zbl 1402.49003
[15] A. Myśliński: Topology optimization of elasto-plastic contact problems. AIP Conf. Proc. 2239 (2020), Article ID 020031, 2 pages. DOI 10.1063/5.0008122
[16] J. V. Outrata, M. Kočvara, J. Zowe: Nonsmooth Approach to Optimization Problems with Equilibrium Constraints: Theory, Applications and Numerical Results. Nonconvex Optimization and Its Applications 28. Kluwer, Dordrecht (1998). DOI 10.1007/978-1-4757-2825-5 | MR 1641213 | Zbl 0947.90093
[17] L. Říha, T. Brzobohatý, A. Markopoulos: Hybrid parallelization of the total FETI solver. Adv. Eng. Softw. 103 (2017), 29-37. DOI 10.1016/j.advengsoft.2016.04.004
[18] R. T. Rockafellar, R. J.-B. Wets: Variational Analysis. Grundlehren der Mathematischen Wissenschaften 317. Springer, Berlin (1998). DOI 10.1007/978-3-642-02431-3 | MR 1491362 | Zbl 0888.49001
[19] H. Schramm, J. Zowe: A version of the bundle idea for minimizing a nonsmooth function: Conceptual idea, convergence analysis, numerical results. SIAM J. Optim. 2 (1992), 121-152. DOI 10.1137/0802008 | MR 1147886 | Zbl 0761.90090
[20] A. Sharma, R. Rangarajan: A shape optimization approach for simulating contact of elastic membranes with rigid obstacles. Int. J. Numer. Methods Eng. 117 (2019), 371-404. DOI 10.1002/nme.5960 | MR 3903330
[21] V. Vondrák, T. Kozubek, A. Markopoulos, Z. Dostál: Parallel solution of contact shape optimization problems based on total FETI domain decomposition method. Struct. Multidiscip. Optim. 42 (2010), 955-964. DOI 10.1007/s00158-010-0537-3 | MR 2735250 | Zbl 1274.74407
Affiliations: Alexandros Markopoulos, Safran Aircraft Engines, 10, allée du Brévent, 91019 Evry, France; Petr Beremlijski (corresponding author), Department of Applied Mathematics, VSB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic, e-mail: petr.beremlijski@vsb.cz; Oldřich Vlach, Department of Applied Mathematics, VSB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic and IT4Innovations National Supercomputing Center, VSB-Technical University of Ostrava, Studentská 6231/1B, 708 00 Ostrava-Poruba, Czech Republic, e-mail: oldrich.vlach2@vsb.cz; Marie Sadowská, Department of Applied Mathematics, VSB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic, e-mail: marie.sadowska@vsb.cz