Applications of Mathematics, Vol. 68, No. 3, pp. 305-327, 2023


Finite time stability and relative controllability of second order linear differential systems with pure delay

Mengmeng Li, Michal Fečkan, JinRong Wang

Received November 23, 2021.   Published online November 30, 2022.

Abstract:  We first consider the finite time stability of second order linear differential systems with pure delay via giving a number of properties of delayed matrix functions. We secondly give sufficient and necessary conditions to examine that a linear delay system is relatively controllable. Further, we apply the fixed-point theorem to derive a relatively controllable result for a semilinear system. Finally, some examples are presented to illustrate the validity of the main theorems.
Keywords:  finite time stability; relative controllability; second order; delayed matrix function
Classification MSC:  34K05, 93C05


References:
[1] J. Diblík, M. Fečkan, M. Pospíšil: Representation of a solution of the Cauchy problem for an oscillating system with two delays and permutable matrices. Ukr. Math. J. 65 (2013), 64-76. DOI 10.1007/s11253-013-0765-y | MR 3104884 | Zbl 1283.34057
[2] J. Diblík, M. Fečkan, M. Pospíšil: On the new control functions for linear discrete delay systems. SIAM J. Control Optim. 52 (2014), 1745-1760. DOI 10.1137/140953654 | MR 3206982 | Zbl 1295.93008
[3] J. Diblík, D. Y. Khusainov, M. Růžičková: Controllability of linear discrete systems with constant coefficients and pure delay. SIAM J. Control Optim. 47 (2008), 1140-1149. DOI 10.1137/070689085 | MR 2407011 | Zbl 1161.93004
[4] A. M. Elshenhab, X. T. Wang: Representation of solutions of linear differential systems with pure delay and multiple delays with linear parts given by non-permutable matrices. Appl. Math. Comput. 410 (2021), Article ID 126443, 13 pages. DOI 10.1016/j.amc.2021.126443 | MR 4274895 | Zbl 07425968
[5] M. Fečkan, J. Wang, Y. Zhou: Controllability of fractional functional evolution equations of Sobolev type via characteristic solution operators. J. Optim. Theory Appl. 156 (2013), 79-95. DOI 10.1007/s10957-012-0174-7 | MR 3019302 | Zbl 1263.93031
[6] F. R. Gantmakher: Theory of Matrices. Nauka, Moskva (1988). (In Russian.) MR 0986246 | Zbl 0666.15002
[7] D. Y. Khusainov, J. Diblík, M. Růžičková, J. Lukáčová: Representation of a solution of the Cauchy problem for an oscillating system with pure delay. Nonlinear Oscil., N.Y. 11 (2008), 276-285. DOI 10.1007/s11072-008-0030-8 | MR 2510692 | Zbl 1276.34055
[8] D. Y. Khusainov, G. V. Shuklin: Relative controllability in systems with pure delay. Int. Appl. Mech. 41 (2005), 210-221. DOI 10.1007/s10778-005-0079-3 | MR 2190935 | Zbl 1100.34062
[9] M. P. Lazarević, A. M. Spasić: Finite-time stability analysis of fractional order time-delay systems: Gronwall's approach. Math. Comput. Modelling 49 (2009), 475-481. DOI 10.1016/j.mcm.2008.09.011 | MR 2483650 | Zbl 1165.34408
[10] M. Li, J. Wang: Finite time stability of fractional delay differential equations. Appl. Math. Lett. 64 (2017), 170-176. DOI 10.1016/j.aml.2016.09.004 | MR 3564757 | Zbl 1354.34130
[11] M. Li, J. Wang: Exploring delayed Mittag-Leffler type matrix functions to study finite time stability of fractional delay differential equations. Appl. Math. Comput. 324 (2018), 254-265. DOI 10.1016/j.amc.2017.11.063 | MR 3743671 | Zbl 1426.34110
[12] X. Li, X. Yang, S. Song: Lyapunov conditions for finite-time stability of time-varying time-delay systems. Automatica 103 (2019), 135-140. DOI 10.1016/j.automatica.2019.01.031 | MR 3911637 | Zbl 1415.93188
[13] C. Liang, J. Wang, D. O'Regan: Controllability of nonlinear delay oscillating systems. Electron. J. Qual. Theory Differ. Equ. 2017 (2017), Article ID 47, 18 pages. DOI 10.14232/ejqtde.2017.1.47 | MR 3661723 | Zbl 1413.34256
[14] C. Liang, J. Wang, D. O'Regan: Representation of a solution for a fractional linear system with pure delay. Appl. Math. Lett. 77 (2018), 72-78. DOI 10.1016/j.aml.2017.09.015 | MR 3725232 | Zbl 1462.34105
[15] M. Pospíšil: Relative controllability of neutral differential equations with a delay. SIAM J. Control Optim. 55 (2017), 835-855. DOI 10.1137/15M1024287 | MR 3625799 | Zbl 1368.34093
[16] M. Pospíšil: Representation of solutions of systems of linear differential equations with multiple delays and nonpermutable variable coefficients. Math. Model. Anal. 25 (2020), 303-322. DOI 10.3846/mma.2020.11194 | MR 4116589 | Zbl 1476.34143
[17] Y. Si, J. Wang, M. Fečkan: Controllability of linear and nonlinear systems governed by Stieltjes differential equations. Appl. Math. Comput. 376 (2020), Article ID 125139, 24 pages. DOI 10.1016/j.amc.2020.125139 | MR 4070317 | Zbl 1475.93015
[18] J. Wang, M. Fečkan, Y. Zhou: Controllability of Sobolev type fractional evolution systems. Dyn. Partial Differ. Equ. 11 (2014), 71-87. DOI 10.4310/DPDE.2014.v11.n1.a4 | MR 3194051 | Zbl 1314.47117
[19] G.-C. Wu, D. Baleanu, S.-D. Zeng: Finite-time stability of discrete fractional delay systems: Gronwall inequality and stability criterion. Commun. Nonlinear Sci. Numer. Simul. 57 (2018), 299-308. DOI 10.1016/j.cnsns.2017.09.001 | MR 3724839 | Zbl 07263288
[20] Z. You, J. Wang, D. O'Regan, Y. Zhou: Relative controllability of delay differential systems with impulses and linear parts defined by permutable matrices. Math. Methods Appl. Sci. 42 (2019), 954-968. DOI 10.1002/mma.5400 | MR 3905829 | Zbl 1410.34235

Affiliations:   Mengmeng Li, Department of Mathematics, Guizhou University, Huaxi, Guiyang, Guizhou 550025, P. R. China, e-mail: mmli@gzu.edu.cn; Michal Fečkan, Department of Mathematical Analysis and Numerical Mathematics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Mlynská dolina, 842 48 Bratislava, Slovakia; Mathematical Institute, Slovak Academy of Sciences, Štefánikova 49, 814 73 Bratislava, Slovakia, e-mail: Michal.Feckan@fmph.uniba.sk, feckan@mat.savba.sk; JinRong Wang (corresponding author), Department of Mathematics, Guizhou University, Huaxi, Guiyang, Guizhou 550025, P. R. China, e-mail: jrwang@gzu.edu.cn


 
PDF available at: