Applications of Mathematics, Vol. 68, No. 4, pp. 485-497, 2023


A generalization of the classical Euler and Korteweg fluids

Kumbakonam Ramamani Rajagopal

Received January 10, 2023.   Published online May 29, 2023.

Abstract:  The aim of this short paper is threefold. First, we develop an implicit generalization of a constitutive relation introduced by Korteweg (1901) that can describe the phenomenon of capillarity. Second, using a sub-class of the constitutive relations (implicit Euler equations), we show that even in that simple situation more than one of the members of the sub-class may be able to describe one or a set of experiments one is interested in describing, and we must determine which amongst these constitutive relations is the best by culling the class by systematically comparing against an increasing set of observations. (The implicit generalization developed in this paper is not a sub-class of the implicit generalization of the Navier-Stokes fluid developed by Rajagopal (2003), (2006) or the generalization due to Průša and Rajagopal (2012), as spatial gradients of the density appear in the constitutive relation developed by Korteweg (1901).) Third, we introduce a challenging set of partial differential equations that would lead to new techniques in both analysis and numerical analysis to study such equations.
Keywords:  compressible fluid; Euler fluid; Korteweg fluid; implicit constitutive equation
Classification MSC:  35Q53


References:
[1] J. Blechta, J. Málek, K. R. Rajagopal: On the classification of incompressible fluids and a mathematical analysis of the equations that govern their motion. SIAM J. Math. Anal. 52 (2020), 1232-1289. DOI 10.1137/19M1244895 | MR 4076814 | Zbl 1432.76075
[2] B. D. Coleman, W. Noll: An approximation theorem for functionals, with applications in continuum mechanics. Arch. Ration. Mech. Anal. 6 (1960), 355-370. DOI 10.1007/BF00276168 | MR 0119598 | Zbl 0097.16403
[3] L. Euler: Sur le mouvement de l'eau par des tuyaux de conduite. Mémoires de l'académie des sciences de Berlin 8 (1754), 111-148. (In French.) Available at https://scholarlycommons.pacific.edu/euler-works/206.
[4] L. Euler: Principes généraux du mouvement des fluides. Mémoires de l'académie des sciences de Berlin 11 (1757), 274-315. (In French.) Available at https://scholarlycommons.pacific.edu/euler-works/226/.
[5] L. Euler: Principia motus fluidorum. Novi Commentarii academiae scientiarum Petro-politanae 6 (1761), 271-311. (In Latin.) Available at https://scholarlycommons.pacific.edu/euler-works/258/.
[6] R. L. Fosdick, K. R. Rajagopal: On the existence of a manifold for temperature. Arch. Ration. Mech. Anal. 81 (1983), 317-332. DOI 10.1007/BF00250858 | MR 683193
[7] M. A. Goodman, S. C. Cowin: A continuum theory for granular materials. Arch. Ration. Mech. Anal. 44 (1972), 249-266. DOI 10.1007/BF00284326 | MR 1553563 | Zbl 0243.76005
[8] G. Green: On the laws of the reflexion and refraction of light at the common surface of two non-crystallized media. Cambr. Phil. Soc. 7 (1837), 1-24. DOI 10.1017/CBO9781107325074.009 | JFM 03.0565.01
[9] K. Hutter, K. R. Rajagopal: On flows of granular materials. Contin. Mech. Thermodyn. 6 (1994), 81-139. DOI 10.1007/BF01140894 | MR 1277702 | Zbl 0804.73003
[10] D. J. Korteweg: Sur la forme que prennent les équations du mouvement des fluides si l'on tient compte des forces capillaires causées par des variations de densité considérables mais continues et sur la théorie de la capillarité dans l'hypothèse d'une variation continue de la densité. Arch. Néerl. (2) 6 (1901), 1-24. (In French.) JFM 32.0756.02
[11] C. Le Roux, K. R. Rajagopal: Shear flows of a new class of power-law fluids. Appl. Math., Praha 58 (2013), 153-177. DOI 10.1007/s10492-013-0008-4 | MR 3034820 | Zbl 1274.76039
[12] J. Málek, V. Průša, K. R. Rajagopal: Generalizations of the Navier-Stokes fluid from a new perspective. Int. J. Eng. Sci. 48 (2010), 1907-1924. DOI 10.1016/j.ijengsci.2010.06.013 | MR 2778752 | Zbl 1231.76073
[13] J. Málek, K. R. Rajagopal: On the modeling of inhomogeneous incompressible fluid-like bodies. Mech. Mater. 38 (2006), 233-242. DOI 10.1016/j.mechmat.2005.05.020
[14] J. Málek, K. R. Rajagopal: Compressible generalized Newtonian fluids. Z. Angew. Math. Phys. 61 (2010), 1097-1110. DOI 10.1007/s00033-010-0061-8 | MR 2738306 | Zbl 1273.76025
[15] J. C. Maxwell: Theory of Heat. Green and Co., London (1871). DOI 10.1017/CBO9781139057943 | JFM 24.1095.01
[16] J. B. McLeod, K. R. Rajagopal, A. S. Wineman: On the existence of a class of deformations for incompressible isotropic elastic materials. Proc. R. Ir. Acad., Sect. A 88 (1988), 91-101. MR 986216 | Zbl 0676.73015
[17] W. Noll: A mathematical theory of the mechanical behavior of continuous media. Arch. Ration. Mech. Anal. 2 (1958), 198-226. DOI 10.1007/BF00277929 | MR 0105862 | Zbl 0083.39303
[18] T. Perlácová, V. Průša: Tensorial implicit constitutive relations in mechanics of incompressible non-Newtonian fluids. J. Non-Newton. Fluid Mech. 216 (2015), 13-21. DOI 10.1016/j.jnnfm.2014.12.006 | MR 3441833
[19] V. Průša, K. R. Rajagopal: On implicit constitutive relations for materials with fading memory. J. Non-Newton. Fluid Mech. 181-182 (2012), 22-29. DOI 10.1016/j.jnnfm.2012.06.004
[20] K. R. Rajagopal: On implicit constitutive theories. Appl. Math., Praha 48 (2003), 279-319. DOI 10.1023/A:1026062615145 | MR 1994378 | Zbl 1099.74009
[21] K. R. Rajagopal: On implicit constitutive theories for fluids. J. Fluid Mech. 550 (2006), 243-249. DOI 10.1017/S0022112005008025 | MR 2263984 | Zbl 1097.76009
[22] K. R. Rajagopal: The elasticity of elasticity. Z. Angew. Math. Phys. 58 (2007), 309-317. DOI 10.1007/s00033-006-6084-5 | MR 2305717 | Zbl 1113.74006
[23] K. R. Rajagopal: A note on the classification of anisotropy of bodies defined by implicit constitutive relations. Mech. Res. Commun. 64 (2015), 38-41. DOI 10.1016/j.mechrescom.2014.11.005
[24] K. R. Rajagopal: Remarks on the notion of "pressure". Int. J. Non-Linear Mech. 71 (2015), 165-172. DOI 10.1016/j.ijnonlinmec.2014.11.031
[25] K. R. Rajagopal, A. Wineman: On constitutive equations for branching of response with selectivity. Int. J. Non-Linear Mech. 15 (1980), 83-91. DOI 10.1016/0020-7462(80)90002-5 | MR 0580724 | Zbl 0442.73002
[26] O. Souček, M. Heida, J. Málek: On a thermodynamic framework for developing boundary conditions for Korteweg-type fluids. Int. J. Eng. Sci. 154 (2020), Article ID 103316, 27 pages. DOI 10.1016/j.ijengsci.2020.103316 | MR 4114183 | Zbl 07228661
[27] A. J. M. Spencer: Theory of invariants. Continuum Physics. Vol. 1. Academic Press, New York (1971), 239-353. DOI 10.1016/B978-0-12-240801-4.50008-X
[28] C. A. Truesdell: A First Course in Rational Continuum Mechanics. Vol. 1. General Concepts. Pure and Applied Mathematics 71. Academic Press, New York (1977). MR 0559731 | Zbl 0357.73011
[29] C. Truesdell, W. Noll: The Non-Linear Field Theories of Mechanics. Springer, Berlin (2004). DOI 10.1007/978-3-662-10388-3 | MR 2056350 | Zbl 1068.74002
[30] C. Truesdell, K. R. Rajagopal: An Introduction to the Mechanics of Fluids. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Boston (2000). DOI 10.1007/978-0-8176-4846-6 | MR 1731441 | Zbl 0942.76001

Affiliations:   Kumbakonam Ramamani Rajagopal, Department of Mechanical Engineering, Texas A&M University, College Station, TX 77845, USA, e-mail: krajagopal@tamu.edu


 
PDF available at: