Applications of Mathematics, Vol. 68, No. 4, pp. 441-465, 2023


The descent algorithms for solving symmetric Pareto eigenvalue complementarity problem

Lu Zou, Yuan Lei

Received January 28, 2022.   Published online February 3, 2023.

Abstract:  For the symmetric Pareto Eigenvalue Complementarity Problem (EiCP), by reformulating it as a constrained optimization problem on a differentiable Rayleigh quotient function, we present a class of descent methods and prove their convergence. The main features include: using nonlinear complementarity functions (NCP functions) and Rayleigh quotient gradient as the descent direction, and determining the step size with exact linear search. In addition, these algorithms are further extended to solve the Generalized Eigenvalue Complementarity Problem (GEiCP) derived from unilateral friction elastic systems. Numerical experiments show the efficiency of the proposed methods compared to the projected steepest descent method with less CPU time.
Keywords:  Pareto eigenvalue complementarity problem; generalized eigenvalue complementarity problem; nonlinear complementarity function; descent algorithm
Classification MSC:  65F10, 65F20, 65F22, 65K10


References:
[1] S. Adly, H. Rammal: A new method for solving Pareto eigenvalue complementarity problems. Comput. Optim. Appl. 55 (2013), 703-731. DOI 10.1007/s10589-013-9534-y | MR 3071170 | Zbl 1296.90124
[2] S. Adly, A. Seeger: A nonsmooth algorithm for cone-constrained eigenvalue problems. Comput. Optim. Appl. 49 (2011), 299-318. DOI 10.1007/s10589-009-9297-7 | MR 2795719 | Zbl 1220.90128
[3] G. P. Barker: Theory of cones. Linear Algebra Appl 39 (1981), 263-291. DOI 10.1016/0024-3795(81)90310-4 | MR 0625256 | Zbl 0467.15002
[4] C. P. Brás, A. Fischer, J. Júdice, K. Schönefeld, S. Seifert: A block active set algorithm with spectral choice line search for the symmetric eigenvalue complementarity problem. Appl. Math. Comput. 294 (2017), 36-48. DOI 10.1016/j.amc.2016.09.005 | MR 3558259 | Zbl 1411.90335
[5] J.-S. Chen: On some NCP-functions based on the generalized Fischer-Burmeister function. Asia-Pac. J. Oper. Res. 24 (2007), 401-420. DOI 10.1142/S0217595907001292 | MR 2335554 | Zbl 1141.90557
[6] J.-S. Chen, S. Pan: A family of NCP functions and a descent method for the nonlinear complementarity problem. Comput. Optim. Appl. 40 (2008), 389-404. DOI 10.1007/s10589-007-9086-0 | MR 2411201 | Zbl 1153.90542
[7] R. W. Cottle, J.-S. Pang, R. E. Stone: The Linear Complementarity Problem. Computer Science and Scientific Computing. Academic Press, Boston (1992). DOI 10.1137/1.9780898719000 | MR 1150683 | Zbl 0757.90078
[8] J. J. Júdice, M. Raydan, S. S. Rosa, S. A. Santos: On the solution of the symmetric eigenvalue complementarity problem by the spectral projected gradient algorithm. Numer. Algorithms 47 (2008), 391-407. DOI 10.1007/s11075-008-9194-7 | MR 2393205 | Zbl 1144.65042
[9] J. J. Júdice, H. D. Sherali, I. M. Ribeiro: The eigenvalue complementarity problem. Comput. Optim. Appl. 37 (2007), 139-156. DOI 10.1007/s10589-007-9017-0 | MR 2325654 | Zbl 1181.90261
[10] M. Kučera: A new method for obtaining eigenvalues of variational inequalities: Operators with multiple eigenvalue. Czech. Math. J. 32 (1982), 197-207. DOI 10.21136/CMJ.1982.101796 | MR 0654056 | Zbl 0621.49005
[11] V. K. Le: Some global bifurcation results for variational inequalities. J. Differ. Equations 131 (1996), 39-78. DOI 10.1006/jdeq.1996.0156 | MR 1415046 | Zbl 0863.49008
[12] H. A. Le Thi, M. Moeini, T. Pham Dinh, J. Júdice: A DC programming approach for solving the symmetric eigenvalue complementarity problem. Comput. Optim. Appl. 51 (2012), 1097-1117. DOI 10.1007/s10589-010-9388-5 | MR 2891930 | Zbl 1241.90153
[13] C. Ma: The semismooth and smoothing Newton methods for solving Pareto eigenvalue problem. Appl. Math. Modelling 36 (2012), 279-287. DOI 10.1016/j.apm.2011.05.045 | MR 2835011 | Zbl 1236.65058
[14] J. A. C. Martins, A. Pinto Da Costa: Stability of finite-dimensional nonlinear elastic systems with unilateral contact and friction. Int. J. Solids Struct. 37 (2000), 2519-2564. DOI 10.1016/S0020-7683(98)00291-1 | MR 1757063 | Zbl 0959.74048
[15] J. A. C. Martins, A. Pinto Da Costa: Bifurcations and instabilities in frictional contact problems: Theoretical relations, computational methods and numerical results. European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS 2004. University of Jyväskylä, Jyväskylä (2004), 102095.
[16] A. Pinto Da Costa, J. A. C. Martins: Computation of bifurcations and instabilities in some frictional contact problems. Available at https://www.researchgate.net/publication/278629570_Computation_of_bifurcations_and_instabilities_in_some_frictional_contact_problems (2001), 15 pages.
[17] A. Pinto Da Costa, J. A. C. Martins, I. N. Figueiredo, J. J. Júdice: The directional instability problem in systems with frictional contacts. Comput. Methods Appl. Mech. Eng. 193 (2004), 357-384. DOI 10.1016/j.cma.2003.09.013 | MR 2031232 | Zbl 1075.74596
[18] A. Pinto Da Costa, A. Seeger: Cone-constrained eigenvalue problems: Theory and algorithms. Comput. Optim. Appl. 45 (2010), 25-57. DOI 10.1007/s10589-008-9167-8 | MR 2594595 | Zbl 1193.65039
[19] M. Queiroz, J. Júdice, C. Humes, Jr.: The symmetric eigenvalue complementarity problem. Math. Comput. 73 (2004), 1849-1863. DOI 10.1090/S0025-5718-03-01614-4 | MR 2059739 | Zbl 1119.90059
[20] P. Quittner: Spectral analysis of variational inequalities. Commentat. Math. Univ. Carol. 27 (1986), 605-629. MR 0873631
[21] A. Seeger: Eigenvalue analysis of equilibrium processes defined by linear complementarity conditions. Linear Algebra Appl. 292 (1999), 1-14. DOI 10.1016/S0024-3795(99)00004-X | MR 1689301 | Zbl 1016.90067
[22] A. Seeger, M. Torki: On eigenvalues induced by a cone constraint. Linear Algebra Appl. 372 (2003), 181-206. DOI 10.1016/S0024-3795(03)00553-6 | MR 1999147 | Zbl 1046.15008
[23] A. Seeger, M. Torki: Local minima of quadratic forms on convex cones. J. Glob. Optim. 44 (2009), 1-28. DOI 10.1007/s10898-007-9225-2 | MR 2496064 | Zbl 1179.90255
[24] A. Seeger, J. Vicente-Perez: On cardinality of Pareto spectra. Electron. J. Linear Algebra 22 (2011), 758-766. DOI 10.13001/1081-3810.1472 | MR 2831028 | Zbl 1254.15015
[25] B.-S. Tam: The Perron generalized eigenspace and the spectral cone of a cone-preserving map. Linear Algebra Appl. 393 (2004), 375-429. DOI 10.1016/j.laa.2004.08.020 | MR 2098599 | Zbl 1062.15013
[26] T. Zcghloul, B. Villechaise: Stress waves in a sliding contact. Part 1: Experimental study. Tribology Series 31 (1996), 33-37. DOI 10.1016/S0167-8922(08)70767-3

Affiliations:   Lu Zou, Yuan Lei (corresponding author), School of Mathematics, Hunan University, Lushan Road (S), Yuelu District, Changsha 410082, P. R. China, e-mail: zoulu7@hnu.edu.cn, yleimath@hnu.edu.cn


 
PDF available at: