Applications of Mathematics, Vol. 68, No. 4, pp. 467-483, 2023


An entropy stable finite volume method for a compressible two phase model

Eduard Feireisl, Mădălina Petcu, Bangwei She

Received February 20, 2022.   Published online March 29, 2023.

Abstract:  We study a binary mixture of compressible viscous fluids modelled by the Navier-Stokes-Allen-Cahn system with isentropic or ideal gas law. We propose a finite volume method for the approximation of the system based on upwinding and artificial diffusion approaches. We prove the entropy stability of the numerical method and present several numerical experiments to support the theory.
Keywords:  compressible Navier-Stokes-Allen-Cahn; finite volume method; entropy stability
Classification MSC:  65M12, 76N06, 76Txx


References:
[1] H. Abels, E. Feireisl: On a diffuse interface model for a two-phase flow of compressible viscous fluids. Indiana Univ. Math. J. 57 (2008), 659-698. DOI 10.1512/iumj.2008.57.3391 | MR 2414331 | Zbl 1144.35041
[2] T. Blesgen: A generalization of the Navier-Stokes equations to two-phase flow. J. Phys. D, Appl. Phys. 32 (1999), 1119-1123. DOI 10.1088/0022-3727/32/10/307
[3] P. G. Ciarlet: The Finite Element Method for Elliptic Problems. Classics in Applied Mathematics 40. SIAM, Philadelphia (2002). DOI 10.1137/1.9780898719208 | MR 1930132 | Zbl 0999.65129
[4] E. Feireisl M. Lukáčová-Medviďová, H. Mizerová, B. She: Convergence of a finite volume scheme for the compressible Navier-Stokes system. ESAIM, Math. Model. Numer. Anal. 53 (2019), 1957-1979. MR 4031688 | Zbl 1447.35243
[5] E. Feireisl, M. Lukáčová-Medviďová, H. Mizerová, B. She: Numerical Analysis of Compressible Fluid Flows. MS&A. Modeling, Simulation and Applications 20. Springer, Cham (2021). DOI 10.1007/978-3-030-73788-7 | MR 4390192 | Zbl 1493.76001
[6] E. Feireisl, M. Lukáčová-Medviďová, H. Mizerová, B. She: On the convergence of a finite volume method for the Navier-Stokes-Fourier system. IMA J. Numer. Anal. 41 (2021), 2388-2422. DOI 10.1093/imanum/draa060 | MR 4328388 | Zbl 07528308
[7] E. Feireisl, M. Petcu, D. Pražák: Relative energy approach to a diffuse interface model of a compressible two-phase flow. Math. Methods Appl. Sci. 42 (2019), 1465-1479. DOI 10.1002/mma.5436 | MR 3928163 | Zbl 1420.35185
[8] E. Feireisl, M. Petcu, B. She: Numerical analysis of a model of two phase compressible fluid flow. J. Sci. Comput. 89 (2021), Article ID 14, 32 pages. DOI 10.1007/s10915-021-01624-7 | MR 4304552 | Zbl 1489.35183
[9] E. Feireisl, H. Petzeltová, E. Rocca, G. Schimperna: Analysis of a phase-field model for two-phase compressible fluids. Math. Models Methods Appl. Sci. 20 (2010), 1129-1160. DOI 10.1142/S0218202510004544 | MR 2673413 | Zbl 1200.76155
[10] E. VanderZee, A. N. Hirani, D. Guoy, E. A. Ramos: Well-centered triangulation. SIAM J. Sci. Comput. 31 (2010), 4497-4523. DOI 10.1137/090748214 | MR 2594991 | Zbl 1253.65030

Affiliations:   Eduard Feireisl, Institute of Mathematics, Czech Academy of Sciences, Žitná 25, 115 67 Praha 1, Czech Republic, e-mail: feireisl@math.cas.cz; Mădălina Petcu, Laboratoire de Mathématiques et Applications, UMR CNRS 7348-SP2MI, Université de Poitiers, Boulevard Marie et Pierre Curie-Téléport 2, 86962 Chasseneuil, Futuroscope Cedex, France; The Institute of Mathematics of the Romanian Academy, P.O. Box 1-764, 014700 Bucharest, Romania; The Institute of Statistics and Applied Mathematics of the Romanian Academy, Calea Victoriei 125, Sector 1, Cod 010071, Bucharest, Romania; e-mail: madalina.petcu@math.univ-poitiers.fr; Bangwei She (corresponding author), Academy for Multidisciplinary Studies, Capital Normal University, West 3rd Ring North Road 105, 100048 Beijing, P. R. China; Institute of Mathematics, Czech Academy of Sciences, Žitná 25, 115 67 Praha 1, Czech Republic, e-mail: she@math.cas.cz


 
PDF available at: