Applications of Mathematics, Vol. 69, No. 6, pp. 769-805, 2024
Morley finite element analysis for fourth-order elliptic equations under a semi-regular mesh condition
Hiroki Ishizaka
Received May 5, 2024. Published online October 21, 2024.
Abstract: We present a precise anisotropic interpolation error estimate for the Morley finite element method (FEM) and apply it to fourth-order elliptic equations. We do not impose the shape-regularity mesh condition in the analysis. Anisotropic meshes can be used for this purpose. The main contributions of this study include providing a new proof of the term consistency. This enables us to obtain an anisotropic consistency error estimate. The core idea of the proof involves using the relationship between the Raviart-Thomas and Morley finite-element spaces. Our results indicate optimal convergence rates and imply that the modified Morley FEM may be effective for errors.
Keywords: Morley finite element; anisotropic interpolation error; fourth-order elliptic problem
References: [1] G. Acosta, T. Apel, R. G. Durán, L. Lombardi: Error estimates for Raviart-Thomas interpolation of any order on anisotropic tetrahedra. Math. Comput. 80 (2011), 141-163. DOI 10.1090/S0025-5718-2010-02406-8 | MR 2728975 | Zbl 1223.65086
[2] G. Acosta, R. G. Durán: The maximum angle condition for mixed and nonconforming elements: Application to the Stokes equations. SIAM J. Numer. Anal. 37 (1999), 18-36. DOI 10.1137/S0036142997331293 | MR 1721268 | Zbl 0948.65115
[3] T. Apel: Anisotropic Finite Elements: Local Estimates and Applications. Advances in Numerical Mathematics. B. G. Teubner, Stuttgart (1999). MR 1716824 | Zbl 0934.65121
[4] T. Apel, M. Dobrowolski: Anisotropic interpolation with applications to the finite element method. Computing 47 (1992), 277-293. DOI 10.1007/BF02320197 | MR 1155498 | Zbl 0746.65077
[5] T. Apel, S. Nicaise, J. Schöberl: Crouzeix-Raviart type finite elements on anisotropic meshes. Numer. Math. 89 (2001), 193-223. DOI 10.1007/PL00005466 | MR 1855825 | Zbl 0989.65130
[6] D. N. Arnold, F. Brezzi: Mixed and nonconforming finite element methods: Implementation, postprocessing and error estimates. RAIRO, Modélisation Math. Anal. Numér. 19 (1985), 7-32. DOI 10.1051/m2an/1985190100071 | MR 0813687 | Zbl 0567.65078
[7] I. Babuška, A. K. Aziz: On the angle condition in the finite element method. SIAM J. Numer. Anal. 13 (1976), 214-226. DOI 10.1137/071302 | MR 0455462 | Zbl 0324.65046
[8] S. C. Brenner, L. R. Scott: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics 15. Springer, New York (2008). DOI 10.1007/978-0-387-75934-0 | MR 2373954 | Zbl 1135.65042
[9] J. W. Cahn, J. E. Hilliard: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28 (1958), 258-267. DOI 10.1063/1.1744102 | Zbl 1431.35066
[10] P. G. Ciarlet: The Finite Element Method for Elliptic Problems. Classics in Applied Mathematics 40. SIAM, New York (2002). DOI 10.1137/1.9780898719208 | MR 1930132 | Zbl 0999.65129
[11] R. G. Durán, A. L. Lombardi: Error estimates for the Raviart-Thomas interpolation under the maximum angle condition. SIAM J. Numer. Anal. 46 (2008), 1442-1453. DOI 10.1137/060665312 | MR 2391001 | Zbl 1168.65061
[12] A. Ern, J.-L. Guermond: Theory and Practice of Finite Elements. Applied Mathematical Sciences 159. Springer, New York (2004). DOI 10.1007/978-1-4757-4355-5 | MR 2050138 | Zbl 1059.65103
[13] A. Ern, J.-L. Guermond: Finite Elements I. Approximation and Interpolation. Texts in Applied Mathematics 72. Springer, Cham (2021). DOI 10.1007/978-3-030-56341-7 | MR 4242224 | Zbl 1476.65003
[14] R. S. Falk, M. E. Morley: Equivalence of finite element methods for problems in elasticity. SIAM J. Numer. Anal. 27 (1990), 1486-1505. DOI 10.1137/072708 | MR 1080333 | Zbl 0722.73068
[15] M. Farhloul, S. Nicaise, L. Paquet: Some mixed finite element methods on anisotropic meshes. M2AN, Math. Model. Numer. Anal. 35 (2001), 907-920. DOI 10.1051/m2an:2001142 | MR 1866274 | Zbl 0990.65129
[16] V. Girault, P.-A. Raviart: Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms. Springer Series in Computational Mathematics 5. Springer, Berlin (1986). DOI 10.1007/978-3-642-61623-5 | MR 0851383 | Zbl 0585.65077
[17] P. Grisvard: Singularities in Boundary Value Problems. Recherches en Mathématiques Appliquées 22. Masson, Paris (1992). MR 1173209 | Zbl 0766.35001
[18] P. Grisvard: Elliptic Problems in Nonsmooth Domains. Classics in Applied Mathematics 69. SIAM, Philadelphia (2011). DOI 10.1137/1.9781611972030.ch1 | MR 3396210 | Zbl 1231.35002
[19] H. Ishizaka: Anisotropic Raviart-Thomas interpolation error estimates using a new geometric parameter. Calcolo 59 (2022), Article ID 50, 27 pages. DOI 10.1007/s10092-022-00494-1 | MR 4514907 | Zbl 1506.65215
[20] H. Ishizaka, K. Kobayashi, T. Tsuchiya: General theory of interpolation error estimates on anisotropic meshes. Japan J. Ind. Appl. Math. 38 (2021), 163-191. DOI 10.1007/s13160-020-00433-z | MR 4213001 | Zbl 1467.65009
[21] H. Ishizaka, K. Kobayashi, T. Tsuchiya: Anisotropic interpolation error estimates using a new geometric parameter. Japan J. Ind. Appl. Math. 40 (2023), 475-512. DOI 10.1007/s13160-022-00535-w | MR 4528995 | Zbl 1509.65007
[22] V. John: Finite Element Methods for Incompressible Flow Problems. Springer Series in Computational Mathematics 51. Springer, Cham (2016). DOI 10.1007/978-3-319-45750-5 | MR 3561143 | Zbl 1358.76003
[23] R. B. Kellogg, J. E. Osborn: A regularity result for the Stokes problem in a convex polygon. J. Funct. Anal. 21 (1976), 397-431. DOI 10.1016/0022-1236(76)90035-5 | MR 0404849 | Zbl 0317.35037
[24] M. Křížek: On the maximum angle condition for linear tetrahedral elements. SIAM J. Numer. Anal. 29 (1992), 513-520. DOI 10.1137/0729031 | MR 1154279 | Zbl 0755.41003
[25] P. Lascaux, P. Lesaint: Some nonconforming finite elements for the plate bending problem. Rev. Franc. Automat. Inform. Rech. Operat. 9 (1975), 9-53. DOI 10.1051/m2an/197509R100091 | MR 0423968 | Zbl 0319.73042
[26] A. Linke: On the role of the Helmholtz decomposition in mixed methods for incompressible flows and a new variational crime. Comput. Methods Appl. Mech. Eng. 268 (2014), 782-800. DOI 10.1016/j.cma.2013.10.011 | MR 3133522 | Zbl 1295.76007
[27] S. Mao, S. Nicaise, Z.-C. Shi: Error estimates of Morley triangular element satisfying the maximal angle condition. Int. J. Numer. Anal. Model. 7 (2010), 639-655. MR 2644296 | Zbl 1407.74089
[28] W. Ming, J. Xu: The Morley element for fourth order elliptic equations in any dimensions. Numer. Math. 103 (2006), 155-169. DOI 10.1007/s00211-005-0662-x | MR 2207619 | Zbl 1092.65103
[29] L. S. D. Morley: The triangular equilibrium element in the solution of plate bending problems. Aero Quart. 19 (1968), 149-169. DOI 10.1017/S0001925900004546
[30] T. K. Nilssen, X.-C. Tai, R. Winther: A robust nonconforming $H^2$-element. Math. Comput. 70 (2001), 489-505. DOI 10.1090/S0025-5718-00-01230-8 | MR 1709156 | Zbl 0965.65127
[31] R. Rannacher: Finite element approximation of supported plates and the Babuška paradox. Z. Angew. Math. Mech. 59 (1979), T73-T76. MR 0533989 | Zbl 0421.73072
[32] R. Rannacher: On nonconforming and mixed finite element methods for plate bending problems: The linear case. RAIRO, Anal. Numér. 13 (1979), 369-387. DOI 10.1051/m2an/1979130403691 | MR 0555385 | Zbl 0425.35042