Applications of Mathematics, first online, pp. 1-22


On modeling flow between adjacent surfaces where the fluid is governed by implicit algebraic constitutive relations

Andreas Almqvist, Evgeniya Burtseva, Kumbakonam R. Rajagopal, Peter Wall

Received June 19, 2024.   Published online November 12, 2024.   OPEN ACCESS

Abstract:  We consider pressure-driven flow between adjacent surfaces, where the fluid is assumed to have constant density. The main novelty lies in using implicit algebraic constitutive relations to describe the fluid's response to external stimuli, enabling the modeling of fluids whose responses cannot be accurately captured by conventional methods. When the implicit algebraic constitutive relations cannot be solved for the Cauchy stress in terms of the symmetric part of the velocity gradient, the traditional approach of inserting the expression for the Cauchy stress into the equation for the balance of linear momentum to derive the governing equation for the velocity becomes inapplicable. Instead, a non-standard system of first-order equations governs the flow. This system is highly complex, making it important to develop simplified models. Our primary contribution is the development of a framework for achieving this. Additionally, we apply our findings to a fluid that exhibits an S-shaped curve in the shear stress versus shear rate plot, as observed in some colloidal solutions.
Keywords:  implicit algebraic constitutive relation; flow between adjacent surfaces
Classification MSC:  76-10, 76A05, 76A20

PDF available at:  Springer   Institute of Mathematics CAS

References:
[1] A. Almqvist, E. Burtseva, K. R. Rajagopal, P. Wall: On lower-dimensional models in lubrication. Part A. Common misinterpretations and incorrect usage of the Reynolds equation. Proc. Inst. Mech. Eng., Part J, J. Eng. Tribology 235 (2021), 1692-1702. DOI 10.1177/1350650120973792
[2] A. Almqvist, E. Burtseva, K. R. Rajagopal, P. Wall: On lower-dimensional models in lubrication. Part B. Derivation of a Reynolds type of equation for incompressible piezo-viscous fluids. Proc. Inst. Mech. Eng., Part J, J. Eng. Tribology 235 (2021), 1703-1718. DOI 10.1177/13506501209738
[3] A. Almqvist, E. Burtseva, K. R. Rajagopal, P. Wall: On flow of power-law fluids between adjacent surfaces: Why is it possible to derive a Reynolds-type equation for pressure-driven flow, but not for shear-driven flow? Appl. Eng. Sci. 15 (2023), Article ID 100145, 9 pages. DOI 10.1016/j.apples.2023.100145
[4] A. Almqvist, E. Burtseva, K. R. Rajagopal, P. Wall: On lower-dimensional models of thin film flow. Part C. Derivation of a Reynolds type of equation for fluids with temperature and pressure dependent viscosity. Proc. Inst. Mech. Eng., Part J, J. Eng. Tribology 237 (2023), 514-526. DOI 10.1177/135065012211352
[5] S. Ansari, M. A. I. Rashid, P. R. Waghmare, D. S. Nobes: Measurement of the fow behavior index of Newtonian and shear-thinning fluids via analysis of the flow velocity characteristics in a mini-channel. SN Appl. Sci. 2 (2020), Article ID 1787, 15 pages. DOI 10.1007/s42452-020-03561-w
[6] E. C. Bingham: Fluidity and Plasticity. McGraw-Hill, New York (1922) .
[7] J. Blechta, J. Málek, K. R. Rajagopal: On the classification of incompressible fluids and a mathematical analysis of the equations that govern their motion. SIAM J. Math. Anal. 52 (2020), 1232-1289. DOI 10.1137/19M1244895  | MR 4076814 | Zbl 1432.76075
[8] P. Boltenhagen, Y. Hu, E. F. Matthys, D. J. Pine: Observation of bulk phase separation and coexistence in a sheared micellar solution. Phys. Rev. Lett. 79 (1997), 2359-2362. DOI 10.1103/PhysRevLett.79.2359
[9] M. Bulíček, P. Gwiazda, J. Málek, A. Świerczewska-Gwiazda: On steady flows of incompressible fluids with implicit power-law-like rheology. Adv. Calc. Var. 2 (2009), 109-136. DOI 10.1515/ACV.2009.006 | MR 2523124 | Zbl 1233.35164
[10] M. Bulíček, P. Gwiazda, J. Málek, A. Świerczewska-Gwiazda: On unsteady flows of implicitly constituted incompressible fluids. SIAM J. Math. Anal. 44 (2012), 2756-2801. DOI 10.1137/110830289 | MR 3023393 | Zbl 1256.35074
[11] L. Diening, C. Kreuzer, E. Süli: Finite element approximation of steady flows of incompressible fluids with implicit power-law-like rheology. SIAM J. Numer. Anal. 51 (2013), 984-1015. DOI 10.1137/120873133  | MR 3035482 | Zbl 1268.76030
[12] D. Dowson: A generalized Reynolds equation for fluid-film lubrication. Int. J. Mech. Sci. 4 (1962), 159-170. DOI 10.1016/S0020-7403(62)80038-1
[13] J. Fabricius, S. Manjate, P. Wall: Error estimates for pressure-driven Hele-Shaw flow. Q. Appl. Math. 80 (2022), 575-595. DOI 10.1090/qam/1619  | MR 4453782 | Zbl 1490.76020
[14] J. Fabricius, S. Manjate, P. Wall: On pressure-driven Hele-Shaw flow of power-law fluids. Appl. Anal. 101 (2022), 5107-5137. DOI 10.1080/00036811.2021.1880570  | MR 4475758 | Zbl 1500.76017
[15] J. Fabricius, E. Miroshnikova, A. Tsandzana, P. Wall: Pressure-driven flow in thin domains. Asymptotic Anal. 116 (2020), 1-26. DOI 10.3233/ASY-191535  | MR 4044383 | Zbl 1442.35335
[16] P. E. Farrell, P. A. Gazca-Orozco: An augmented Lagrangian preconditioner for implicitly constituted non-Newtonian incompressible flow. SIAM J. Sci. Comput. 42 (2020), B1329-B1349. DOI 10.1137/20M1336618  | MR 4169754 | Zbl 1458.65147
[17] P. E. Farrell, P. A. Gazca-Orozco, E. Süli: Numerical analysis of unsteady implicitly constituted incompressible fluids: 3-field formulation. SIAM J. Numer. Anal. 58 (2020), 757-787. DOI 10.1137/19M125738X  | MR 4066569 | Zbl 1434.76065
[18] P. A. Gazca-Orozco: A semismooth Newton method for implicitly constituted non-Newtonian fluids and its application to the numerical approximation of Bingham flow. ESAIM, Math. Model. Numer. Anal. 55 (2021), 2679-2703. DOI 10.1051/m2an/2021068  | MR 4337453 | Zbl 1483.65182
[19] M. Grob, C. Heussinger, A. Zippelius: Jamming of frictional particles: A nonequilibrium first-order phase transition. Phys. Rev. E 89 (2014), Article ID 050201, 4 pages. DOI 10.1103/PhysRevE.89.050201
[20] T. Gustafsson, K. R. Rajagopal, R. Stenberg, J. Videman: Nonlinear Reynolds equation for hydrodynamic lubrication. Appl. Math. Modelling 39 (2015), 5299-5309. DOI 10.1016/j.apm.2015.03.028  | MR 3354905 | Zbl 1443.76037
[21] W. H. Herschel, R. Bulkley: Konsistenzmessungen von Gummi-Benzollösungen. Kolloid-Zeit. 39 (1926), 291-300. (In German.) DOI 10.1007/BF01432034
[22] Y. T. Hu, P. Boltenhagen, E. Matthys, D. J. Pine: Shear thickening in low-concentration solutions of wormlike micelles. II. Slip, fracture, and stability of the shear-induced phase. J. Rheol. 42 (1998), 1209-1226. DOI 10.1122/1.550917
[23] Y. T. Hu, P. Boltenhagen, D. J. Pine: Shear thickening in low-concentration solutions of wormlike micelles. I. Direct visualization of transient behavior and phase transitions. J. Rheol. 42 (1998), 1185-1208. DOI 10.1122/1.550926
[24] M. Lanzendörfer, J. Málek, K. R. Rajagopal: Numerical simulations of an incompressible piezoviscous fluid flowing in a plane slider bearing. Meccanica 53 (2018), 209-228. DOI 10.1007/s11012-017-0731-0  | MR 3760916
[25] M. Lanzendörfer, J. Stebel: On a mathematical model of journal bearing lubrication. Math. Comput. Simul. 81 (2011), 2456-2470. DOI 10.1016/j.matcom.2011.03.011 | MR 2811797 | Zbl 1237.76038
[26] C. Le Roux, K. R. Rajagopal: Shear flows of a new class of power-law fluids. Appl. Math., Praha 58 (2013), 153-177. DOI 10.1007/s10492-013-0008-4  | MR 3034820 | Zbl 1274.76039
[27] J. Málek, V. Průša, K. R. Rajagopal: Generalizations of the Navier-Stokes fluid from a new perspective. Int. J. Eng. Sci. 48 (2010), 1907-1924. DOI 10.1016/j.ijengsci.2010.06.013  | MR 2778752 | Zbl 1231.76073
[28] R. Mari, R. Seto, J. F. Morris, M. M. Denn: Nonmonotonic flow curves of shear thickening suspensions. Phys. Rev. E 91 (2015), Article ID 052302, 6 pages. DOI 10.1103/PhysRevE.91.052302
[29] B. M. M. Pereira, G. A. S. Dias, F. S. Cal, K. R. Rajagopal, J. H. Videman: Lubrication approximation for fluids with shear-dependent viscosity. Fluids 4 (2019), Article ID 98, 17 pages. DOI 10.3390/fluids4020098
[30] T. Perlácová, V. Průša: Tensorial implicit constitutive relations in mechanics of incompressible non-Newtonian fluids. J. Non-Newton. Fluid Mech. 216 (2015), 13-21. DOI 10.1016/j.jnnfm.2014.12.006  | MR 3441833
[31] K. R. Rajagopal: On implicit constitutive theories. Appl. Math., Praha 48 (2003), 279-319. DOI 10.1023/A:1026062615145  | MR 1994378 | Zbl 1099.74009
[32] K. R. Rajagopal: On implicit constitutive theories for fluids. J. Fluid Mech. 550 (2006), 243-249. DOI 10.1017/S0022112005008025  | MR 2263984 | Zbl 1097.76009
[33] K. R. Rajagopal: A review of implicit algebraic constitutive relations for describing the response of nonlinear fluids. C. R., Méc., Acad. Sci. Paris 351 (2023), 703-720. DOI 10.5802/crmeca.180
[34] A. J. M. Spencer: Theory of invariants. Continuum Physics. Vol. 1. Academic Press, New York (1971), 239-353. DOI 10.1016/B978-0-12-240801-4.50008-X
[35] E. Süli, T. Tscherpel: Fully discrete finite element approximation of unsteady flows of implicitly constituted incompressible fluids. IMA J. Numer. Anal. 40 (2020), 801-849. DOI 10.1093/imanum/dry097 | MR 4092271 | Zbl 1464.65131

Affiliations:   Andreas Almqvist, Evgeniya Burtseva, Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE-971 87 Luleå, Sweden, e-mail: andreas.almqvist@ltu.se, evgeniya.burtseva@ltu.se, Kumbakonam R. Rajagopal, Department of Mechanical Engineering, Texas A&M University, 3123 College Station, TX 77843-3123, USA, e-mail: krajagopal@tamu.edu; Peter Wall (corresponding author), Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE-971 87 Luleå, Sweden, e-mail: peter.wall@ltu.se


 
PDF available at: