Applications of Mathematics, first online, pp. 1-21


Thermo-viscous fluid flow in porous slab bounded between two impermeable parallel plates in relative motion: Four stage algorithm approach

Nalimela Pothanna, Podila Aparna, M. Pavankumar Reddy, R. Archana Reddy, M. Clement Joe Anand

Received July 23, 2023.   Published online September 3, 2024.

Abstract:  The problem of an approximate solution of thermo-viscous fluid flow in a porous slab bounded between two impermeable parallel plates in relative motion is examined in this paper. The two plates are kept at two different temperatures and the flow is generated by a constant pressure gradient together with the motion of one of the plates relative to the other. The velocity and temperature distributions have been obtained by a four-stage algorithm approach. It is worth mentioning that reverse effects are noticed on velocity and temperature distributions. These effects can be attributed to Darcy's friction offered by the medium. The approximation results obtained in the present paper are in good agreement with the earlier numerical results of thermo-viscous fluid flows in plane geometry.
Keywords:  Darcy's porosity parameter; thermo-mechanical stress coefficient; strain thermal conductivity coefficient
Classification MSC:  35Q35, 58D30

PDF available at:  Springer   Institute of Mathematics CAS

References:
[1] P. Aparna, P. Padmaja, N. Pothanna, J. V. Ramana Murthy: Uniform flow of viscous fluid past a porous sphere saturated with micro polar fluid. Biointerface Research Appl. Chem. 13 (2023), Article ID 69, 12 pages. DOI 10.33263/BRIAC131.069
[2] P. Aparna, N. Pothanna, J. V. Ramana Murthy: Viscous fluid flow past a permeable cylinder. Numerical Heat Transfer and Fluid Flow. Springer, Singapore (2018), 285-293. DOI 10.1007/978-981-13-1903-7_33
[3] P. Aparna, N. Pothanna, J. V. Ramana Murthy: Rotary oscillations of a permeable sphere in an incompressible couple stress fluid. Advances in Fluid Dynamics. Springer, Singapore (2020), 135-146. DOI 10.1007/978-981-15-4308-1_10
[4] P. Aparna, N. Pothanna, J. V. Ramana Murthy, K. Sreelatha: Flow generated by slow steady rotation of a permeable sphere in a micro-polar fluid. Alexandria Eng. J. 56 (2017), 679-685. DOI 10.1016/j.aej.2017.01.018
[5] S. A. Bakar, N. M. Arifin, I. Pop: Stability analysis on mixed convection nanofluid flow in a permeable porous medium with radiation and internal heat generation. J. Adv. Res. Micro Nano Eng. 13 (2023), 1-17. DOI 10.37934/armne.13.1.117
[6] K. H. Benkara-Mostefa, R. Benchabi-Lanani: Heat transfer and entropy generation of turbulent flow in corrugated channel using nanofluid. J. Adv. Res. Fluid Mech. Thermal Sci. 109 (2023), 136-150. DOI 10.37934/arfmts.109.2.136150
[7] Y.-M. Chu, F. Alzahrani, O. Mopuri, C. Ganteda, M. I. Khan, P. J. Laksmi, S. U. Khan, S. M. Eldin: Thermal impact of hybrid nanofluid due to inclined oscillatory porous surface with thermo-diffusion features. Case Stud. Thermal Eng. 42 (2023), Article ID 102695, 16 pages. DOI 10.1016/j.csite.2023.102695
[8] B. D. Coleman, V. J. Mizel: Existence of caloric equations of state in thermodynamics. J. Chem. Phys. 40 (1964), 1116-1125. DOI 10.1063/1.1725257 | MR 0161576
[9] H. Darcy: Les fontaines publiques de la ville de Dijon. Victor Dalmont, Paris (1856). (In French.)
[10] J. D. Ferry: Viscoelastic Properties of Polymers. John Wiley & Sons, New York (1961).
[11] A. E. Green, P. M. Naghdi: A dynamical theory of interacting continua. Int. J. Eng. Sci. 3 (1965), 231-241. DOI 10.1016/0020-7225(65)90046-7 | MR 0186267
[12] N. Heuer, T. Linss: A balanced finite-element method for an axisymmetrically loaded thin shell. Appl. Math., Praha 69 (2024), 151-168. DOI 10.21136/AM.2024.0134-23 | MR 4728189 | Zbl 7893329
[13] J. Juwari, A. D. Monlei Wicaksono, T. Arbianzah, R. P. Anugraha, R. Handogo: Simulation of dispersion and explosion in petrol station using 3D computational fluid dynamics FLACS software. J. Adv. Res. Fluid Mech. Thermal Sci. 109 (2023), 113-135. DOI 10.37934/arfmts.109.2.113135
[14] P. D. Kelly: Some viscometric flows of incompressible thermoviscous fluids. Int. J. Eng. Sci. 2 (1965), 519-533. DOI 10.1016/0020-7225(65)90007-8 | MR 0177574
[15] M. Khan, M. Y. Malik, T. Salahuddin, A. Hussian: Heat and mass transfer of Williamson nanofluid flow yield by an inclined Lorentz force over a nonlinear stretching sheet. Results Phys. 8 (2018), 862-868. DOI 10.1016/j.rinp.2018.01.005
[16] M. Khan, T. Salahuddin, M. Y. Malik, F. Khan: Change in internal energy of Carreau fluid flow along with ohmic heating: A von Karman application. Physica A 547 (2020), Article ID 123440, 11 pages. DOI 10.1016/j.physa.2019.123440 | MR 4081575 | Zbl 07530142
[17] M. Khan, T. Salahuddin, M. Y. Malik, A. Tanveer, A. Hussain, A. S. Alqahtani: 3-D axisymmetric Carreau nanofluid flow near the Homann stagnation region along with chemical reaction: Application Fourier's and Fick's laws. Math. Comput. Simul. 170 (2020), 221-235. DOI 10.1016/j.matcom.2019.10.019 | MR 4046640 | Zbl 1510.76200
[18] S. L. Koh, A. C. Eringen: On the foundations of non-linear thermo-viscoelasticity. Int. J. Eng. Sci. 1 (1963), 199-229. DOI 10.1016/0020-7225(63)90034-X | MR 0151044
[19] P. N. Lakshmi Devi, P. K. Meduri: Oscillatory flow of couple stress fluid flow over a contaminated fluid sphere with slip condition. CFD Lett. 15 (2023), 148-165. DOI 10.37934/cfdl.15.8.148165
[20] W. Langlois, R. Rivlin: Slow steady-state flow of visco-elastic fluids through non-circular tubes. Rend. Mat. Appl., V. Ser. 22 (1963), 169-185. MR 0154526 | Zbl 0113.40405
[21] S. Li, M. I. Khan, A. B. Alruqi, S. U. Khan, S. S. Abdullaev, B. M. Fadhl, B. M. Makhdoum: Entropy optimized flow of Sutterby nanomaterial subject to porous medium: Buongiorno nanofluid model. Heliyon 9 (2023), Article ID e17784, 16 pages. DOI 10.1016/j.heliyon.2023.e17784
[22] P. Nageswara Rao, N. C. Pattabhi Ramacharyulu: Steady flow of a second-order thermo-viscous fluid over an infinite plate. Proc. Indian Acad. Sci., Sect. A, Part III 88 (1979), 157-162. DOI 10.1007/BF02871612 | Zbl 0406.76012
[23] P. Padmaja, P. Aparna, R. S. R. Gorla, N. Pothanna: Numerical solution of singularly perturbed two parameter problems using exponential splines. Int. J. Appl. Mech. Eng. 26 (2021), 160-172. DOI 10.2478/ijame-2021-0025
[24] N. Pothanna, P. Aparna, R. S. R. Gorla: A numerical study of coupled non-linear equations of thermo-viscous fluid flow in cylindrical geometry. Int. J. Appl. Mech. Eng. 22 (2017), 965-979. DOI 10.1515/ijame-2017-0062
[25] N. Pothanna, P. Aparna, G. Sireesha, P. Padmaja: Analytical and numerical study of steady flow of thermo-viscous fluid between two horizontal parallel plates in relative motion. Commun. Math. Appl. 13 (2022), 1427-1441. DOI 10.26713/cma.v13i5.2254
[26] N. Pothanna, N. C. Pattabhi Ramacharyulu, P. Nageswara Rao: Slow steady motion of a thermo-viscous fluid in a porous slab bounded between two impermeable parallel plates. Adv. Appl. Sci. Res. 3 (2012), 2866-2883.
[27] N. Pothanna, N. C. Pattabhi Ramacharyulu, P. Nageswara Rao: Steady flow of a slightly thermo-viscous fluid in a porous slab bounded between two fixed porous parallel plates. Int. J. Math. Arch. 3 (2012), 1125-1135.
[28] N. Pothanna, N. C. Pattabhi Ramacharyulu, P. Nageswara Rao: Flow of slightly thermo-viscous fluid in a porous slab bounded between two permeable parallel plates. Int. J. Adv. Appl. Math. Mech. 2 (2015), 225-233. MR 3372994 | Zbl 1359.76028
[29] L. Preziosi, A. Farina: On Darcy's law for growing porous media. Int. J. Non-Linear Mech. 37 (2002), 485-491. DOI 10.1016/S0020-7462(01)00022-1 | Zbl 1346.76194
[30] R. S. Rivlin: The solution of problems in second order elasticity theory. J. Ration. Mech. Anal. 2 (1953), 58-81. DOI 10.1512/iumj.1953.2.52002 | MR 0051676 | Zbl 0050.18601
[31] R. S. Rivlin, C. Topakoglu: A theorem in the theory of finite elastic deformations. J. Ration. Mech. Anal. 3 (1954), 581-589. DOI 10.1512/iumj.1954.3.53030 | MR 0063231 | Zbl 0056.42603
[32] Y. Terapabkajornded, S. Orankitjaroen, C. Licht, T. Weller: Asymptotic modeling of the transient response of nonlinear Kelvin-Voigt viscoelastic thin plates with Norton or Tresca friction by Trotter theory. Appl. Math., Praha 69 (2024), 25-48. DOI 10.21136/AM.2023.0013-23 | MR 4709332 | Zbl 07830497
[33] K. Yamamoto, Z. Yoshida: Flow through a porous wall with convective acceleration. J. Phys. Soc. Japan 37 (1974), 774-779. DOI 10.1143/JPSJ.37.774

Affiliations:   Nalimela Pothanna, Podila Aparna, M. Pavankumar Reddy, Department of Mathematics, VNR Vignana Jyothi Institute of Engineering and Technology, Vignana Jyothi Nagar, Pragathi Nagar, Hyderabad - 500090, Telangana, India, e-mail: pothareddy81@gmail.com, aparnapodila@gmail.com, mprnitw@gmail.com; R. Archana Reddy, SR University, Ananthasagar, Warangal - 506001, Telangana, India, e-mail: archanareddy.srec@gmail.com; M. Clement Joe Anand (corresponding author), Department of Mathematics, Mount Carmel College (Autonomous), Palace Road, Vasanthnagar, Bengaluru - 560052, Karnataka, India, e-mail: arjoemi@gmail.com


 
PDF available at: