Applications of Mathematics, first online, pp. 1-10
Conforming simplicial partitions of product-decomposed polytopes
Sergey Korotov, Jon Eivind Vatne
Received July 25, 2024. Published online November 17, 2024.
Abstract: We propose some approaches for the generation of conforming simplicial partitions with various regularity properties for polytopic domains that are products or a union of products, thus generalizing our earlier results. The techniques presented can be used for finite element simulations of higher-dimensional problems.
Keywords: conforming simplicial partition; product polytope; red refinement; finite element method
References: [1] T. Apel, N. Düvelmeyer: Transformation of hexahedral finite element meshes into tetrahedral meshes according to quality criteria. Computing 71 (2003), 293-304. DOI 10.1007/s00607-003-0031-5 | MR 2027214 | Zbl 1037.65125
[2] J. Bey: Simplicial grid refinement: On Freudenthal's algorithm and the optimal number of congruence classes. Numer. Math. 85 (2000), 1-29. DOI 10.1007/s002110050475 | MR 1751367 | Zbl 0949.65128
[3] P. G. Ciarlet: The Finite Element Method for Elliptic Problems. Studies in Mathematics and Its Applications 4. North-Holland, Amsterdam (1978). MR 0520174 | Zbl 0383.65058
[4] H. Freudenthal: Simplizialzerlegungen von beschränkter Flachheit. Ann. Math. (2) 43 (1942), 580-582. (In German.) DOI 10.2307/1968813 | MR 0007105 | Zbl 0060.40701
[5] D. Hacon, C. Tomei: Tetrahedral decompositions of hexahedral meshes. Eur. J. Comb. 10 (1989), 435-443. DOI 10.1016/S0195-6698(89)80017-4 | MR 1014551 | Zbl 0723.05040
[6] A. Khademi, S. Korotov, J. E. Vatne: On the generalization of the Synge-Křížek maximum angle condition for $d$-simplices. J. Comput. Appl. Math. 358 (2019), 29-33. DOI 10.1016/j.cam.2019.03.003 | MR 3926696 | Zbl 1426.65177
[7] A. Khademi, S. Korotov, J. E. Vatne: On mesh regularity conditions for simplicial finite elements. Numerical Mathematics and Advanced Applications. ENUMATH 2019. Lecture Notes in Computational Science and Engineering 139. Springer, Cham (2021), 633-640. DOI 10.1007/978-3-030-55874-1_62 | MR 4266542 | Zbl 1475.65192
[8] S. Korotov, M. Křížek: On conforming tetrahedralizations of prismatic partitions. Differential and Difference Equations with Applications. Springer Proceedings in Mathematics & Statistics 47. Springer, New York (2013), 63-68. DOI 10.1007/978-1-4614-7333-6_5 | MR 3110255 | Zbl 1317.65063
[9] S. Korotov, J. E. Vatne: Preserved structure constants for red refinements of product elements. Numerical Geometry, Grid Generation and Scientific Computing. Lecture Notes in Computational Science Engineering 143. Springer, Cham (2021), 241-248. DOI 10.1007/978-3-030-76798-3_15 | MR 4391448 | Zbl 1496.74120
[10] M. Křížek: On semiregular families of triangulations and linear interpolation. Appl. Math., Praha 36 (1991), 223-232. DOI 10.21136/AM.1991.104461 | MR 1109126 | Zbl 0728.41003
[11] H. W. Kuhn: Some combinatorial lemmas in topology. IBM J. Res. Dev. 4 (1960), 518-524. DOI 10.1147/rd.45.0518 | MR 0124038 | Zbl 0109.15603
Affiliations: Sergey Korotov (corresponding author), Division of Mathematics and Physics, UKK, Mälardalen University, Box 883, 721 23 Västerås, Sweden, e-mail: sergey.korotov@mdu.se; Jon Eivind Vatne, Department of Economics, Norwegian Business School (BI), Kong Christian Frederiks plass 5, 5006 Bergen, Norway, e-mail: jon.e.vatne@bi.no