Applications of Mathematics, first online, pp. 1-34


Local well-posedness of solutions to 2D magnetic Prandtl model in the Prandtl-Hartmann regime

Yuming Qin, Xiuqing Wang, Junchen Liu

Received March 13, 2024.   Published online March 26, 2025.

Abstract:  We consider the 2D magnetic Prandtl equation in the Prandtl-Hartmann regime in a periodic domain and prove the local existence and uniqueness of solutions by energy methods in a polynomial weighted Sobolev space. On the one hand, we have noted that the $x$-derivative of the pressure $P$ plays a key role in all known results on the existence and uniqueness of solutions to the Prandtl-Hartmann regime equations, in which the case of favorable $P$ $(\partial_x P<0)$ or the case of $\partial_x P=0$ (led by constant outer flow $U={\rm constant}$) was only considered. While in this paper, we have no restriction on the sign of $\partial_x P$, which has generalized all previous results and definitely gives rise to a difficulty in mathematical treatments. To overcome this difficulty, we shall use the skill of cancellation mechanism which is valid under the monotonicity assumption. One the other hand, we consider the general outer flow $U\not={\rm constant}$, leading to the boundary data at $y=0$ being much more complicated. To deal with these boundary data, some more delicate estimates and mathematical induction method will be used. Therefore, our result also provides an extension of earlier studies by addressing the challenges arising from general outer flow.
Keywords:  Prandtl-Hartmann; boundary layer; local well-posedness
Classification MSC:  76N10, 76N15, 35M13, 35Q35, 53C35

PDF available at:  Institute of Mathematics CAS

References:
[1] R. Alexandre, Y.-G. Wang, C.-J. Xu, T. Yang: Well-posedness of the Prandtl equation in Sobolev spaces. J. Am. Math. Soc. 28 (2015), 745-784. DOI 10.1090/S0894-0347-2014-00813-4 | MR 3327535 | Zbl 1317.35186
[2] R. E. Caflisch, M. Sammartino: Existence and singularities for the Prandtl boundary layer equations. ZAMM, Z. Angew. Math. Mech. 80 (2000), 733-744. DOI 10.1002/1521-4001(200011)80:11/12<733::AID-ZAMM733>3.0.CO;2-L | MR 1801538 | Zbl 1050.76016
[3] M. Cannone, M. C. Lombardo, M. Sammartino: Existence and uniqueness for the Prandtl equations. C. R. Acad. Sci., Paris, Sér. I, Math. 332 (2001), 277-282. DOI 10.1016/S0764-4442(00)01798-5 | MR 1817376 | Zbl 0984.35002
[4] D. Chen, S. Ren, Y. Wang, Z. Zhang: Global well-posedness of the 2-D magnetic Prandtl model in the Prandtl-Hartmann regime. Asymptotic Anal. 120 (2020), 373-393. DOI 10.3233/ASY-191593 | MR 4169212 | Zbl 1472.35288
[5] D. Chen, Y. Wang, Z. Zhang: Well-posedness of the linearized Prandtl equation around a non-monotonic shear flow. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 35 (2018), 1119-1142. DOI 10.1016/J.ANIHPC.2017.11.001 | MR 3795028 | Zbl 1392.35220
[6] D. Chen, Y. Wang, Z. Zhang: Well-posedness of the Prandtl equation with monotonicity in Sobolev spaces. J. Differ. Equations 264 (2018), 5870-5893. DOI 10.1016/j.jde.2018.01.024 | MR 3765768 | Zbl 1402.35218
[7] W. F. Cope, D. R. Hartree: The laminar boundary layer in compressible flow. Philos. Trans. Roy. Soc. London, Ser. A 241 (1948), 1-69. DOI 10.1098/rsta.1948.0008 | MR 0025857 | Zbl 0066.20003
[8] X. Dong, Y. Qin: Global well-posedness of solutions to 2D Prandtl-Hartmann equations in analytic framework. J. Partial Differ. Equations 35 (2022), 289-306. DOI 10.4208/jpde.v35.n3.7 | MR 4449831 | Zbl 1513.76125
[9] L. Fan, L. Ruan, A. Yang: Local well-posedness of solutions to the boundary layer equations for 2D compressible flow. J. Math. Anal. Appl. 493 (2021), Article ID 124565, 25 pages. DOI 10.1016/j.jmaa.2020.124565 | MR 4145619 | Zbl 1453.76195
[10] J. Gao, D. Huang, Z. Yao: Boundary layer problems for the two-dimensional inhomogeneous incompressible magnetohydrodynamics equations. Calc. Var. Partial Differ. Equ. 60 (2021), Article ID 67, 61 pages. DOI 10.1007/s00526-021-01958-y | MR 4239821 | Zbl 1461.76552
[11] J. Gao, M. Li, Z. Yao: Higher regularity and asymptotic behavior of 2D magnetic Prandtl model in the Prandtl-Hartmann regime. J. Differ. Equations 386 (2024), 294-367. DOI 10.1016/j.jde.2023.12.030 | MR 4687368 | Zbl 1533.35272
[12] F. Gargano, M. Sammartino, V. Sciacca: Singularity formation for Prandtl's equations. Physica D 238 (2009), 1975-1991. DOI 10.1016/j.physd.2009.07.007 | MR 2582626 | Zbl 1191.76039
[13] D. Gérard-Varet, N. Masmoudi: Well-posedness for the Prandtl system without analyticity or monotonicity. Ann. Sci. Éc. Norm. Supér. (4) 48 (2015), 1273-1325. DOI 10.24033/asens.2270 | MR 3429469 | Zbl 1347.35201
[14] D. Gérard-Varet, M. Prestipino: Formal derivation and stability analysis of boundary layer models in MHD. Z. Angew. Math. Phys. 68 (2017), Article ID 76, 16 pages. DOI 10.1007/s00033-017-0820-x | MR 3657241 | Zbl 1432.76285
[15] S. Gong, Y. Guo, Y.-G. Wang: Boundary layer problems for the two-dimensional compressible Navier-Stokes equations. Anal. Appl., Singap. 14 (2016), 1-37. DOI 10.1142/S0219530515400011 | MR 3438645 | Zbl 1333.35194
[16] S. Gong, X. Wang: On a global weak solution and back flow of the mixed Prandtl-Hartmann boundary layer problem. J. Math. Fluid Mech. 23 (2021), Article ID 11, 16 pages. DOI 10.1007/s00021-020-00530-6 | MR 4179899 | Zbl 1455.76206
[17] Y. Huang, C.-J. Liu, T. Yang: Local-in-time well-posedness for compressible MHD boundary layer. J. Differ. Equations 266 (2019), 2978-3013. DOI 10.1016/j.jde.2018.08.052 | MR 3912675 | Zbl 1456.35162
[18] W.-X. Li, R. Xu, T. Yang: Global well-posedness of a Prandtl model from MHD in Gevrey function spaces. Acta Math. Sci., Ser. B, Engl. Ed. 42 (2022), 2343-2366. DOI 10.1007/s10473-022-0609-7 | MR 4494626 | Zbl 1513.76172
[19] C.-J. Liu, D. Wang, F. Xie, T. Yang: Magnetic effects on the solvability of 2D MHD boundary layer equations without resistivity in Sobolev spaces. J. Funct. Anal. 279 (2020), Article ID 108637, 44 pages. DOI 10.1016/j.jfa.2020.108637 | MR 4102162 | Zbl 1445.76097
[20] C.-J. Liu, F. Xie, T. Yang: Justification of Prandtl ansatz for MHD boundary layer. SIAM J. Math. Anal. 51 (2019), 2748-2791. DOI 10.1137/18M1219618 | MR 3975147 | Zbl 1419.76555
[21] C.-J. Liu, F. Xie, T. Yang: MHD boundary layers in Sobolev spaces without monotonicity. I. Well-posedness theory. Commun. Pure Appl. Math. 72 (2021), 63-121. DOI 10.1002/cpa.21763 | MR 3882222 | Zbl 1404.35492
[22] N. Masmoudi, T. K. Wong: Local-in-time existence and uniqueness of solutions to the Prandtl equations by energy methods. Commun. Pure Appl. Math. 68 (2015), 1683-1741. DOI 10.1002/cpa.21595 | MR 3385340 | Zbl 1326.35279
[23] O. A. Oleinik, V. N. Samokhin: Mathematical Models in Boundary Layer Theory. Applied Mathematics and Mathematical Computation 15. Chapman & Hall/CRC, Boca Raton (1999). DOI 10.1201/9780203749364 | MR 1697762 | Zbl 0928.76002
[24] Y. Qin, X. Dong: Local existence of solutions to 2D Prandtl equations in a weighted Sobolev space. Anal. Math. Phys. 12 (2022), Article ID 16, 26 pages. DOI 10.1007/s13324-021-00615-z | MR 4350292 | Zbl 1481.35343
[25] Y. Qin, X. Dong: Local well-posedness of solutions to 2D mixed Prandtl equations in Sobolev space without monotonicity and lower bound. Nonlinear Anal., Real World Appl. 80 (2024), Article ID 104140, 13 pages. DOI 10.1016/j.nonrwa.2024.104140 | MR 4759566 | Zbl 1550.76360
[26] E. Weinan, B. Engquist: Blow up of solutions of the unsteady Prandtl's equation. Commun. Pure Appl. Math. 50 (1997), 1287-1293. DOI 10.1002/(SICI)1097-0312(199712)50:12<1287::AID-CPA4>3.0.CO;2-4 | MR 1476316 | Zbl 0908.35099
[27] F. Xie, T. Yang: Global-in-time stability of 2D MHD boundary Layer in the Prandtl-Hartmann regime. SIAM J. Math. Anal. 50 (2018), 5749-5760. DOI 10.1137/18M1174969 | MR 3873032 | Zbl 1402.76111
[28] F. Xie, T. Yang: Lifespan of solutions to MHD boundary layer equations with analytic perturbation of general shear flow. Acta Math. Appl. Sin., Engl. Ser. 35 (2019), 209-229. DOI 10.1007/s10255-019-0805-y | MR 3918641 | Zbl 1414.76044
[29] Z. Xin, L. Zhang: On the global existence of solutions to the Prandtl's system. Adv. Math. 181 (2004), 88-133. DOI 10.1016/S0001-8708(03)00046-X | MR 2020656 | Zbl 1052.35135

Affiliations:   Yuming Qin, Department of Mathematics, Institute for Nonlinear Sciences, Donghua University, 2999 North Renmin Road, Shanghai 201620, P. R. China, e-mail: yuming_qin@hotmail.com; Xiuqing Wang (corresponding author), Junchen Liu, Department of Mathematics, Kunming University of Science and Technology, No. 727 Jingming South Road, Chenggong District, Kunming 650500, Yunnan, P. R. China, e-mail: daqingwang@kust.edu.cn, liujunchen@stu.kust.edu.cn


 
PDF available at: