Applications of Mathematics, Vol. 70, No. 6, pp. 941-991, 2025


Efficient Karhunen-Loève expansions via Legendre-Galerkin discretization and tensor structure

Michal Béreš

Received July 13, 2025.   Published online December 5, 2025.

Abstract:  We develop an efficient framework for Karhunen-Loève expansions of isotropic Gaussian random fields on hyper-rectangular domains. The approach approximates the covariance kernel by a positive mixture of squared-exponentials, fitted via Newton optimization with a theoretically informed initialization; we also provide convergence estimates for this Gaussian-mixture approximation. The resulting separable kernel enables a Legendre-Galerkin discretization with a Kronecker product structure across dimensions, together with submatrices exhibiting even/odd parity. For assembly, we employ a Duffy-type transformation followed by Gaussian quadrature. These structural properties substantially reduce memory usage and arithmetic cost compared with naive formulations. All algorithms and numerical experiments are released in an open-source repository that reproduces every figure and table. For completeness, a concise derivation of the three-term recurrence for Legendre polynomials is included in appendix.
Keywords:  Karhunen-Loève expansion; Legendre-Galerkin basis; separable covariance; Gaussian-mixture approximation; tensor structure
Classification MSC:  60G15, 42C05, 60G60, 65D30, 65F15


References:
[1] M. Abramowitz, I. A. Stegun (Eds.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York (1965). MR 0167642 | Zbl 0171.38503
[2] R. J. Adler, J. E. Taylor: Random Fields and Geometry. Springer Monographs in Mathematics. Springer, New York (2007). DOI 10.1007/978-0-387-48116-6 | MR 2319516 | Zbl 1149.60003
[3] J. S. Azevedo, F. Wisniewski, S. P. Oliveira: A Galerkin method with two-dimensional Haar basis functions for the computation of the Karhunen-Loève expansion. Comput. Appl. Math. 37 (2018), 1825-1846. DOI 10.1007/s40314-017-0422-4 | MR 3804154 | Zbl 1563.65504
[4] A. A. Basmaji, M. M. Dannert, U. Nackenhorst: Implementation of Karhunen-Loève expansion using discontinuous Legendre polynomial-based Galerkin approach. Prob. Eng. Mech. 67 (2022), Article ID 103176, 10 pages. DOI 10.1016/j.probengmech.2021.103176
[5] J. Beran: Statistics for Long-Memory Processes. Monographs on Statistics and Applied Probability 61. Chapman & Hall, New York (1994). DOI 10.1201/9780203738481 | MR 1304490 | Zbl 0869.60045
[6] M. Béreš: Karhunen-Loève decomposition of isotropic Gaussian random fields using a tensor approximation of autocovariance kernel. High Performance Computing in Science and Engineering. Lecture Notes in Computer Science 11087. Springer, Cham (2018), 188-202. DOI 10.1007/978-3-319-97136-0_14
[7] M. Béreš: Methods for the Solution of Differential Equations with Uncertainties in Parameters: Ph.D. Thesis. VŠB-Technical University Ostrava, Ostrava (2023), Available at http://hdl.handle.net/10084/151354.
[8] W. Betz, I. Papaioannou, D. Straub: Numerical methods for the discretization of random fields by means of the Karhunen-Loève expansion. Comput. Methods Appl. Mech. Eng. 271 (2014), 109-129. DOI 10.1016/j.cma.2013.12.010 | MR 3162666 | Zbl 1296.65191
[9] T. S. Chihara: An Introduction to Orthogonal Polynomials. Mathematics and its Applications 13. Gordon and Breach, New York (1978). MR 0481884 | Zbl 0389.33008
[10] J.-P. Chilès, P. Delfiner: Geostatistics: Modeling Spatial Uncertainty. Wiley Series in Probability and Statistics. John Wiley & Sons, Hoboken (2012). DOI 10.1002/9781118136188 | MR 1679557 | Zbl 1256.86007
[11] G. Christakos: Random Field Models in Earth Sciences. Academic Press, San Diego (1992). DOI 10.1016/C2009-0-22238-0
[12] J. B. Conway: A Course in Functional Analysis. Graduate Texts in Mathematics 96. Springer, New York (1990). DOI 10.1007/978-1-4757-4383-8 | MR 1070713 | Zbl 0706.46003
[13] A. R. Freeze: A stochastic-conceptual analysis of one-dimensional groundwater flow in nonuniform homogeneous media. Water Resources Research 11 (1975), 725-741. DOI 10.1029/WR011i005p00725
[14] W. Gautschi: Orthogonal Polynomials: Computation and Approximation. Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2004). DOI 10.1093/oso/9780198506720.001.0001 | MR 2061539 | Zbl 1130.42300
[15] R. G. Ghanem, P. D. Spanos: Stochastic Finite Elements: A Spectral Approach. Springer, New York (1991). DOI 10.1007/978-1-4612-3094-6 | MR 1083354 | Zbl 0722.73080
[16] T. Gneiting, M. Schlather: Stochastic models that separate fractal dimension and the Hurst effect. SIAM Rev. 46 (2004), 269-282. DOI 10.1137/S0036144501394387 | MR 2114455 | Zbl 1062.60053
[17] G. H. Golub, C. F. Van Loan: Matrix Computations. Johns Hopkins University Press, Baltimore (2013). MR 3024913 | Zbl 1268.65037
[18] G. H. Golub, J. H. Welsch: Calculation of Gauss quadrature rules. Math. Comput. 23 (1969), 221-230. DOI 10.1090/S0025-5718-69-99647-1 | MR 0245201 | Zbl 0179.21901
[19] S. P. Huang, S. T. Quek, K. K. Phoon: Convergence study of the truncated Karhunen-Loève expansion for simulation of stochastic processes. Int. J. Numer. Methods Eng. 52 (2001), 1029-1043. DOI 10.1002/nme.255 | Zbl 0994.65004
[20] E. Kreyszig: Introductory Functional Analysis with Applications. John Wiley & Sons, New York (1989). MR 0992618 | Zbl 0706.46001
[21] C. L. Lawson, R. J. Hanson: Solving Least Squares Problems. Classics in Applied Mathematics 15. SIAM, Philadelphia (1995). DOI 10.1137/1.9781611971217 | MR 1349828 | Zbl 0860.65029
[22] Q. Liu, X. Zhang: A Chebyshev polynomial-based Galerkin method for the discretization of spatially varying random properties. Acta Mech. 228 (2017), 2063-2081. DOI 10.1007/s00707-017-1819-2 | MR 3654157 | Zbl 1369.65166
[23] M. Loève: Probability Theory. II. Graduate Texts in Mathematics 46. Springer, New York (1978). MR 0651018 | Zbl 0385.60001
[24] M. L. Mika, T. J. R. Hughes, D. Schillinger, P. Wriggers, R. R. Hiemstra: A matrix-free isogeometric Galerkin method for Karhunen-Loève approximation of random fields using tensor product splines, tensor contraction and interpolation based quadrature. Comput. Methods Appl. Mech. Eng. 379 (2021), Article ID 113730, 32 pages. DOI 10.1016/j.cma.2021.113730 | MR 4232582 | Zbl 1506.74419
[25] S. P. Oliveira, J. S. Azevedo: Spectral element approximation of Fredholm integral eigenvalue problems. J. Comput. Appl. Math. 257 (2014), 46-56. DOI 10.1016/j.cam.2013.08.016 | MR 3107405 | Zbl 1294.65115
[26] S. Rahman: A Galerkin isogeometric method for Karhunen-Loève approximation of random fields. Comput. Methods Appl. Mech. Eng. 338 (2018), 533-561. DOI 10.1016/j.cma.2018.04.026 | MR 3811637 | Zbl 1440.65228
[27] C. E. Rasmussen, C. K. I. Williams: Gaussian Processes for Machine Learning. MIT Press, Cambridge (2006). DOI 10.7551/mitpress/3206.001.0001 | MR 2514435 | Zbl 1177.68165
[28] M. Reed, B. Simon: Methods of Modern Mathematical Physics. Vol. 1. Functional Analysis. Academic Press, New York (1980). MR 0751959 | Zbl 0459.46001
[29] W. Rudin: Principles of Mathematical Analysis. International Series in Pure and Applied Mathematics. McGraw-Hill, New York (1976). MR 0385023 | Zbl 0346.26002
[30] I. J. Schoenberg: Metric spaces and completely monotone functions. Ann. Math. (2) 39 (1938), 811-841. DOI 10.2307/1968466 | MR 1503439 | Zbl 0019.41503
[31] M. L. Stein: Interpolation of Spatial Data: Some Theory for Kriging. Springer Series in Statistics. Springer, New York (1999). DOI 10.1007/978-1-4612-1494-6 | MR 1697409 | Zbl 0924.62100
[32] G. Szegő: Orthogonal Polynomials. American Mathematical Society Colloquium Publications 23. AMS, Providence (1975). DOI 10.1090/coll/023 | MR 0372517 | Zbl 0305.42011
[33] L. N. Trefethen: Approximation Theory and Approximation Practice. Other Titles in Applied Mathematics 164. SIAM, Philadelphia (2020). DOI 10.1137/1.9781611975949 | MR 4050406 | Zbl 1437.41001
[34] H. Wendland: Scattered Data Approximation. Cambridge Monographs on Applied and Computational Mathematics 17. Cambridge University Press, Cambridge (2005). DOI 10.1017/CBO9780511617539 | MR 2131724 | Zbl 1075.65021
[35] D. V. Widder: The Laplace Transform. Princeton Mathematical Series 6. Princeton University Press, Princeton (1941). DOI 10.1515/9781400876457 | MR 0005923 | Zbl 0063.08245
[36] H. Xie, T. Zhou: A multilevel finite element method for Fredholm integral eigenvalue problems. J. Comput. Phys. 303 (2015), 173-184. DOI 10.1016/j.jcp.2015.09.043 | MR 3422706 | Zbl 1349.65724

Affiliations:   Michal Béreš, Institute of Geonics of the CAS, Studentská 1768/9, 708 00 Ostrava, Czech Republic; Department of Applied Mathematics, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava, Czech Republic, e-mail: michal.beres@vsb.cz


 
PDF available at: